Skip to main content

Multivariate Minimization in Computational Chemistry

  • Chapter
  • First Online:
Molecular Modeling and Simulation: An Interdisciplinary Guide

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 21))

Abstract

Optimization is a fundamental component of molecular modeling. The determination of a low-energy conformation for a given force field can be the final objective of the computation. It can also serve as a starting point for subsequent calculations, such as molecular dynamics simulations or normal-mode analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The notorious ‘traveling salesman’ problem seeks to find the optimal travel route that covers a given number of cities, each one only once, and returning to the home town. Visually, imagine drawing such a route on a map, where each city k for k = 0, …, n is designated by coordinates {x k , y k }. The connected route started at {x 0, y 0} covers each city and returns to the original point. Though simple to envision, there are clearly many such routes, and the number of combinations that connect all these cities grows steeply with n. This problem in fact belongs to a class of very difficult problems (known as NP-complete)for which no polynomial-complexity algorithm is known (i.e., the computational time for an exact solution of this problem increases exponentially with n).

  2. 2.

    This does not imply that the reduction in the gradient norm is monotonic; see Figure 11.11 for example.

  3. 3.

    Typically, ε m is 10− 15 and 10− 7, respectively, for double and single-precision IEEE arithmetic [954].

  4. 4.

    See historical note below on the method’s name.

References

  1. L. Adams and J. L. Nazareth, editors. Linear and Nonlinear Conjugate Gradient- Related Methods. SIAM, Philadelphia, PA, 1996.

    Google Scholar 

  2. D. Beard and T. Schlick. Inertial stochastic dynamics: I. long-timestep methods for langevin dynamics. J. Chem. Phys., 112:7313–7322, 2000.

    Google Scholar 

  3. J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization. heory and Examples, volume 3 of Canadian Mathematical Society (CMS) Books in Mathematics. Springer-Verlag, New York, NY, 2000.

    Google Scholar 

  4. R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Stat. Comput., 16:1190–1208, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton matrices and their use in limited memory methods. Math. Prog., 63:129–156, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. H. Byrd, J. Nocedal, and C. Zhu. Towards a discrete Newton method with mem- ory for large-scale optimization. In G. Di Pillo and F. Giannessi, editors, Nonlinear Optimization and Applications. Plenum, 1996.

    Google Scholar 

  7. F. Calvo. Non-genetic global optimization methods in molecular science: An overview. Comp. Mat. Sci., 45:8–15, 2009.

    Article  Google Scholar 

  8. A. R. Conn, N. I. M. Gould, and Ph. L. Toint. LANCELOT: A FORTRAN Package for Large-Scale Nonlinear Optimization (Release A), volume 17 of Springer Series in Computational Mathematics. Springer-Verlag, New York, NY, 1992.

    Google Scholar 

  9. R. S. Dembo and T. Steihaug. Truncated-Newton algorithms for large-scale unconstrained optimization. Math. Prog., 26:190–212, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained Op- timization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1983. (Reprinted by SIAM, 1996).

    Google Scholar 

  11. P. Derreumaux, G. Zhang, B. Brooks, and T. Schlick. A truncated-Newton method adapted for CHARMM and biomolecular applications. J. Comput. Chem., 15:532–552, 1994.

    Article  Google Scholar 

  12. D. Flatters and R. Lavery. Sequence-dependent dynamics of TATA-box binding sites. Biophys. J., 75:372–381, 1998.

    Article  Google Scholar 

  13. J. Flori´an, M. F. Goodman, and A. Warshel. Computer simulations of protein functions: searching for the molecular origin of the replication fidelity of DNA polymerases. Proc. Natl. Acad. Sci. USA, 102:6819–6824, 2005.

    Google Scholar 

  14. N. Foloppe and A. D. MacKerell, Jr. All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phased macromolecular target data. J. Comput. Chem., 21:86–104, 2000.

    Google Scholar 

  15. W. W. Gibbs. Evolution in a bottle: Synthetic life oozes closer to reality. self- replicating RNAs advance science another step toward artificial life. Sci. Amer., 300:18–21, 2009.

    Google Scholar 

  16. K. B. Gibson and H. A. Scheraga. Decisions in force field development: Reply to Kollman and Dill. J. Biomol. Struct. Dyn., 8:1109–1111, 1991.

    Article  Google Scholar 

  17. J. C. Gilbert and C. Lemarechal. Some numerical experiments with variable- storage quasi-Newton algorithms. Math. Prog. B, 45:407–435, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. C. Gilbert and J. Nocedal. Global convergence properties of conjugate gradient methods for optimization. Technical Report 1268, Institut National de Recherche en Informatique et en Automatique, January 1991.

    Google Scholar 

  19. V. Gogonea, D. Su´arex, A. van der Vaart, and K. M. Merz, Jr. New developments in applying quantum mechanics to proteins. Curr. Opin. Struct. Biol., 11:217–223, 2001.

    Google Scholar 

  20. L. Greengard and V. Rokhlin. On the evaluation of electrostatic interactions in molecular modeling. Chemica Scripta, 29A:139–144, 1989.

    Google Scholar 

  21. F. Guo, A. R. Gooding, and T. R. Cech. Structure of the tetrahymena ribozyme: base triple sandwich and metal ion at the active site. Mol Cell., 16:351–362, 2004.

    Google Scholar 

  22. T. L. Hill. An Introduction to Statistical Thermodynamics. Dover, New York, NY, 1986.

    Google Scholar 

  23. B. E. Hingerty, R. H. Ritchie, T. L. Ferrell, and J. E. Turner. Dielectric effects in biopolymers: The theory of ionic saturation revisited. Biopolymers, 24:427–439, 1985.

    Article  Google Scholar 

  24. J. Liphardt, B. Onoa, S. B. Smith, I. Tinoco, Jr., and C. Bustamante. Reversible unfolding of single RNA molecules by mechanical force. Science, 292:733–737, 2001.

    Article  Google Scholar 

  25. C. Lipinski and A. Hopkins. Navigating chemical space for biology and medicine. ature, 432:855–861, 2004.

    Google Scholar 

  26. Y. Lu and J. Liu. Functional DNA nanotechnology: Emerging applications of DNAzymes and aptamers. Curr. Opin. Biotech., 17:580–588, 2006.

    Article  Google Scholar 

  27. G. T. Montelione and S. Anderson. Structural genomics: Keystone for a human proteome project. Nature Struc. Biol., 6:11–12, 1999.

    Article  Google Scholar 

  28. P. B. Moore. Structural motifs in RNA. Ann. Rev. Biochem., 68:287–300, 1999.

    Article  Google Scholar 

  29. E. W. Myers, G. G. Sutton, H. O. Smith, M. D. Adams, and J. C. Venter. On the sequencing and assembly of the human genome. Proc. Natl. Acad. Sci. USA, 99:4145–4146, 2002.

    Article  Google Scholar 

  30. P. Nissen, J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz. The structural basis of ribosome activity in peptide bond synthesis. Science, 289:920–930, 2000.

    Article  Google Scholar 

  31. P. Nissen, J. A. Ippolito, N. Ban, P. B. Moore, and T. A. Steitz. RNA tertiary inter- actions in the large ribosomal subunit: The A-minor motif. Proc. Natl. Acad. Sci. SA, 98:4899–4903, 2001.

    Article  Google Scholar 

  32. K. T. No, S. G. Kim, K.-H. Cho, and H. A. Scheraga. Description of hydration free energy density as a function of molecular physical properties. Biophys. Chem., 78:127–145, 1999.

    Article  Google Scholar 

  33. M. E. M. Noble, J. A. Endicott, and L. N. Johnson. Protein kinase inhibitors: Insights into drug design from structure. Science, 303:1800–1805, 2004.

    Article  Google Scholar 

  34. J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of Computation, 35:773–782, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  35. C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 25:1656–1676, 2004.

    Article  Google Scholar 

  36. M. L. Overton. Numerical Computing with IEEE Floating Point Arithmetic. SIAM, Philadelphia, PA, 2001.

    Google Scholar 

  37. G. A. Petsko. An idea whose time has gone. Genome Biol., 8:107, 2007.

    Article  Google Scholar 

  38. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kalé, and K. Schulten. Scalable molecular dynamics with NAMD. . Comput. Chem., 26:1781–1802, 2005.

    Google Scholar 

  39. G. E. Plum and K. J. Breslauer. Calorimetry of proteins and nucleic acids. Curr. pin. Struct. Biol., 5:682–690, 1995.

    Article  Google Scholar 

  40. C. A. Schiffer, J. W. Caldwell, P. A. Kollman, and R. M. Stroud. Protein structure prediction with a combined solvation free energy-molecular mechanics force field. ol. Sim., 10:121–149, 1993.

    Google Scholar 

  41. T. Schlick. A recipe for evaluating and differentiating cos φ expressions. J. Com- put. Chem., 10:951–956, 1989.

    Article  Google Scholar 

  42. T. Schlick. Engineering teams up with computer-simulation and visualization tools to probe biomolecular mechanisms. Biophys. J., 85:1, 2003.

    Article  Google Scholar 

  43. T. Schlick. The critical collaboration between art and science: Applying an ex- periment on a bird in an air pump to the ramifications of genomics on society. eonardo, 38:323–329, 2005.

    Google Scholar 

  44. T. Schlick. Molecular-dynamics based approaches for enhanced sampling of long-time, large-scale conformational changes in biomolecules. F1000 Biol. Rep., 1:51, 2009.

    Google Scholar 

  45. T. Schlick. Monte Carlo, harmonic approximation, and coarse-graining approaches for enhanced sampling of biomolecular structure. F1000 Biol. Rep., 1:48, 2009.

    Google Scholar 

  46. T. Schlick, B. Li, and W. K. Olson. The influence of salt on DNA energetics and dynamics. Biophys. J., 67:2146–2166, 1994.

    Article  Google Scholar 

  47. T. Schlick, M. Mandziuk, R.D. Skeel, and K. Srinivas. Nonlinear resonance artifacts in molecular dynamics simulations. J. Comput. Phys., 139:1–29, 1998.

    Article  MathSciNet  Google Scholar 

  48. T. Schlick and C. S. Peskin. Can classical equations simulate quantum-mechanical behavior? A molecular dynamics investigation of a diatomic molecule with a Morse potential. Comm. Pure App. Math., 42:1141–1163, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  49. eferences [1163] H. M. Senn and W. Thiel. QM/MM methods for biological systems. Top. Curr. hem., 268:173–290, 2007.

    Google Scholar 

  50. J. D.Watson. The Double Helix. A Personal Account of the Discovery of the Struc- ture of DNA. Norton Critical Edition G.S. Stent (Editor), Norton & Company, New York, NY, 1980.

    Google Scholar 

  51. P. G.Wolynes. Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proc. Natl. Acad. Sci. USA, 94:6170–6175, 1997.

    Article  Google Scholar 

  52. B. Wu, P. Dr¨oge, and C. A. Davey. Site selectivity of platinum anticancer therapeutics. Nat. Chem. Biol., 4:110–112, 2008.

    Google Scholar 

  53. X. Wu and S. Wang. Self-guided molecular dynamics simulation for efficient conformational search. J. Phys. Chem. B, 102:7238–7250, 1998.

    Article  Google Scholar 

  54. X.Wu, S.Wang, and B. R. Brooks. Direct observation of the folding and unfolding of β-hairpin in explicit water through computer simulation. J. Amer. Chem. Soc., 124:5282–5283, 2002.

    Article  Google Scholar 

  55. M. A. Young, B. Jayaram, and D. L. Beveridge. Intrusion of counterions into the spine of hydration in the minor groove of B-DNA: Fractional occupancy of electronegative pockets. J. Amer. Chem. Soc., 119:59–69, 1997.

    Article  Google Scholar 

  56. A. H. Zewail. Physical biology: 4D visualization of complexity. In A. H. Zewail, editor, Physical Biology: From Atoms to Medicine, pages 23–50. Imperial College Press, London, UK, 2008.

    Google Scholar 

  57. Q. Zhao and W. Yang. Analytical energy gradients and geometry optimization in the divide-and-conquer method for large molecules. J. Chem. Phys., 102:9598– 9603, 1995.

    Article  Google Scholar 

  58. Y. Zhao, B. L. Kormos, D. L. Beveridge, and A. M. Baranger. Molecular dynamics simulations studies of a protein-RNA complex with a selectively modified binding interface. Biopolymers, 81:256–269, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamar Schlick .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schlick, T. (2010). Multivariate Minimization in Computational Chemistry. In: Molecular Modeling and Simulation: An Interdisciplinary Guide. Interdisciplinary Applied Mathematics, vol 21. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6351-2_11

Download citation

Publish with us

Policies and ethics