Skip to main content

Anesthesia Outside the Operating Room

  • Chapter
  • First Online:
Neonatal Anesthesia

Abstract

Conducting operative procedures in the neonatal intensive care unit (NICU) remains a contentious and controversial subject. The NICU is used as an operating room (OR) in many centers for selected critically ill neonates. There are both risks and benefits to the neonate, the surgery team, and the anesthesiologists when performing operative services in the NICU. Select factors in neonatal physiology that might impact anesthesia during surgery outside the OR are reviewed followed by a discussion on benefits, risks, and indications for operating in the NICU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Davis JM, Auten RL. Maturation of the antioxidant system and the effects on preterm birth. Semin Fetal Neonatal Med. 2010;15(4):191–5.

    PubMed  Google Scholar 

  2. Saugstad OD, Sejersted Y, Solberg R, et al. Oxygenation of the newborn: a molecular approach. Neonatology. 2012;101:315–25.

    CAS  PubMed  Google Scholar 

  3. Carlo WA, Finer NN, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Target ranges of oxygen saturation in extremely preterm infants. N Engl J Med. 2010;362(21):1959–69.

    CAS  PubMed  Google Scholar 

  4. Finer NN, Carlo WA, Walsh MC, Rich W, Gantz MG, Laptook AR, et al. Early CPAP versus surfactant in extremely preterm infants. N Engl J Med. 2010;362(21):1970–9.

    CAS  PubMed  Google Scholar 

  5. Stenson BJ, Tarnow-Mordi WO, Darlow BA, et al. Oxygen saturation and outcomes in preterm infants. NEJM. 2013;368:2094–104.

    PubMed  Google Scholar 

  6. Schmidt B, Whyte RK, Asztalos EV, et al. Effects of targeting higher vs lower arterial oxygen saturations on death or disability in extremely preterm infants: a randomized clinical trial. JAMA. 2013;309:2111–20.

    CAS  PubMed  Google Scholar 

  7. Askie LM, Henderson-Smart DJ, Ko H. Restricted versus liberal oxygen exposure for preventing morbidity and mortality in preterm or low birth weight infants. Cochrane Database Syst Rev 2009:CD001077.

    Google Scholar 

  8. Lakshminrusimha S, Russell JA, Steinhorn RH, Ryan RM, Gugino SF, Morin 3rd FC, et al. Pulmonary arterial contractility in neonatal lambs increases with 100 % oxygen resuscitation. Pediatr Res. 2006;59(1):137–41.

    PubMed Central  PubMed  Google Scholar 

  9. Vento M, Asensi M, Sastre J, Garcia-Sala F, Pallardo FV, Vina J. Resuscitation with room air instead of 100 % oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics. 2001;107(4):642–7.

    CAS  PubMed  Google Scholar 

  10. Naumburg E. Results of recent research on perinatal risk factors: resuscitation using oxygen increases the risk of childhood leukemia. Lakartidningen. 2002;99(24):2745–7.

    PubMed  Google Scholar 

  11. Short JA, van der Walt JH. Oxygen in neonatal and infant anesthesia–current practice in the UK. Paediatr Anaesth. 2008;18(5):378–87.

    PubMed  Google Scholar 

  12. de Graaff JC, Bijker JB, Kappen TH, et al. Incidence of intraoperative hypoxemia in children in relation to age. Anesth Analg. 2013;117:169–75.

    PubMed  Google Scholar 

  13. Hardman JG, Wills JS. The development of hypoxaemia during apnoea in children: a computational modelling investigation. Br J Anaesth. 2006;97(4):564–70.

    CAS  PubMed  Google Scholar 

  14. Mort TC. Preoxygenation in critically ill patients requiring emergency tracheal intubation. Crit Care Med. 2005;33(11):2672–5.

    PubMed  Google Scholar 

  15. Burri PH. Fetal and postnatal development of the lung. Annu Rev Physiol. 1984;46:617–28.

    CAS  PubMed  Google Scholar 

  16. Cote CJ, Zaslavsky A, Downes JJ, Kurth CD, Welborn LG, Warner LO, et al. Postoperative apnea in former preterm infants after inguinal herniorrhaphy. A combined analysis. Anesthesiology. 1995;82(4):809–22.

    CAS  PubMed  Google Scholar 

  17. Miller MJ, Martin RJ, Carlo WA, Fouke JM, Strohl KP, Fanaroff AA. Oral breathing in newborn infants. J Pediatr. 1985;107(3):465–9.

    CAS  PubMed  Google Scholar 

  18. Miller MJ, Carlo WA, Strohl KP, Fanaroff AA, Martin RJ. Effect of maturation on oral breathing in sleeping premature infants. J Pediatr. 1986;109(3):515–19.

    CAS  PubMed  Google Scholar 

  19. Knauth A, Baumgart S. Accurate, noninvasive quantitation of expiratory gas leak from uncuffed infant endotracheal tubes. Pediatr Pulmonol. 1990;9(1):55–60.

    CAS  PubMed  Google Scholar 

  20. Litman RS, Maxwell LG. Cuffed versus uncuffed endotracheal tubes in pediatric anesthesia: the debate should finally end. Anesthesiology. 2013;118:500–1.

    PubMed  Google Scholar 

  21. Weiss M, Dullenkopf A, Fischer JE, Keller C, Gerber AC, et al. Prospective randomized controlled multi-center trial of cuffed or uncuffed endotracheal tubes in small children. Br J Anaesth. 2009;103:867–73.

    CAS  PubMed  Google Scholar 

  22. Sathyamoorthy M, Lerman J, Lakshminrusimha S, Feldman D. Inspiratory stridor after tracheal intubation with a MicroCuff® tracheal tube in three young infants. Anesthesiology. 2013;118:748–50.

    PubMed  Google Scholar 

  23. Sathyamoorthy M, Lerman J, Asariparampil R, Lakshminrusimha S. Incidence of Stridor in a neonatal intensive care unit (NICU) after the use of uncuffed and MicroCuff® tracheal tubes: a retrospective review. Anesthesiology Abstracts San Francisco, 2013;A1199.

    Google Scholar 

  24. Kumar VH, Hutchison AA, Lakshminrusimha S, Morin 3rd FC, Wynn RJ, Ryan RM. Characteristics of pulmonary hypertension in preterm neonates. J Perinatol. 2007;27(4):214–19.

    CAS  PubMed  Google Scholar 

  25. Lakshminrusimha S, Steinhorn RH. Pulmonary vascular biology during neonatal transition. Clin Perinatol. 1999;26(3):601–19.

    CAS  PubMed  Google Scholar 

  26. Shankaran S, Langer JC, Kazzi SN, Laptook AR, Walsh M. Cumulative index of exposure to hypocarbia and hyperoxia as risk factors for periventricular leukomalacia in low birth weight infants. Pediatrics. 2006;118(4):1654–9.

    PubMed  Google Scholar 

  27. Miranda P. Intraventricular hemorrhage and posthemorrhagic hydrocephalus in the preterm infant. Minerva Pediatr. 2010;62(1):79–89.

    CAS  PubMed  Google Scholar 

  28. Noori S, Stavroudis TA, Seri I. Systemic and cerebral hemodynamics during the transitional period after premature birth. Clin Perinatol. 2009;36:723–36.

    PubMed  Google Scholar 

  29. McKee LA, Fabres J, Howard G, Peralta-Carcelen M, Carlo WA, Ambalavanan N. PaCO2 and neurodevelopment in extremely low birth weight infants. J Pediatr. 2009;155(2):217–21 e1.

    PubMed  Google Scholar 

  30. Sheard NF, Kleinman RE. TPN cholestasis in premature infants: the role of parenteral nutrition solutions. Pediatr Ann. 1987;16(3):243, 6, 8, 50 & 52.

    Google Scholar 

  31. Martin RJ, Fanaroff AA, Walsh MC, editors. Fanaroff and Martin's Neonatal Perinatal Medicine – Diseases of the fetus and infant. 9th ed. St. Louis: Elsevier Mosby; 2011.

    Google Scholar 

  32. Greer FR. Osteopenia of prematurity. Annu Rev Nutr. 1994;14:169–85.

    CAS  PubMed  Google Scholar 

  33. Mitchell SM, Rogers SP, Hicks PD, Hawthorne KM, Parker BR, Abrams SA. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support. BMC Pediatr. 2009;9:47.

    PubMed Central  PubMed  Google Scholar 

  34. Bachiller PR, Chou JH, Romanelli TM, Roberts Jr JD. Neonatal emergencies. In: Coté CJ, Lerman J, Anderson BA, editors. A practice of anesthesia for infants and children. Philadelphia: Saunders Elsevier; 2013. Chap. 36.

    Google Scholar 

  35. Frawley G, Bayley G, Chondros P. Laparotomy for necrotizing enterocolitis: intensive care nursery compared with operating theatre. J Paediatr Child Health. 1999;35(3):291–5.

    CAS  PubMed  Google Scholar 

  36. McKee M. Operating on critically ill neonates: the OR or the NICU. Semin Perinatol. 2004;28(3):234–9.

    PubMed  Google Scholar 

  37. Mallick MS, Jado AM, Al-Bassam AR. Surgical procedures performed in the neonatal intensive care unit on critically ill neonates: feasibility and safety. Ann Saudi Med. 2008;28(2):105–8.

    PubMed  Google Scholar 

  38. Rees CM, Hall NJ, Eaton S, Pierro A. Surgical strategies for necrotising enterocolitis: a survey of practice in the United Kingdom. Arch Dis Child Fetal Neonatal Ed. 2005;90(2):F152–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Parente A, Canizo A, Huerga A, Lain A, Fanjul M, Carrera N, et al. Is it correct to use neonatal intensive care units as operating rooms? Cir Pediatr. 2009;22(2):61–4.

    CAS  PubMed  Google Scholar 

  40. Laptook A, Tyson J, Shankaran S, McDonald S, Ehrenkranz R, Fanaroff A, et al. Elevated temperature after hypoxic-ischemic encephalopathy: risk factor for adverse outcomes. Pediatrics. 2008;122(3):491–9.

    PubMed Central  PubMed  Google Scholar 

  41. John T, Colvin R, Ferrall B. Improving the management and delivery of bedside patent ductus arteriosus ligation. AORN J. 2007;86(2):231–8.

    PubMed  Google Scholar 

  42. Wortham BM, Rais-Bahrami K. Umbilical vein catheterization. In: MacDonald MG, Ramasethu J, editors. Atlas of procedures in neonatology. 4th ed. Philadelphia: Lippincott Willimas & Wilkins; 2007. p. 177.

    Google Scholar 

  43. Wortham BM, Gaitatzes CG, Rais-Bahrami K. Umbilical artery catheterization. In: MacDonald MG, Ramasethu J, editors. Atlas of procedures in neonatology. 4th ed. Philadelphia: Lippincott Willimas & Wilkins; 2007. p. 157.

    Google Scholar 

  44. Massaro AN, Rais-Bahrami K, Eichelberger MR. Peripheral arterial cannulation. In: MacDonald MG, Ramasethu J, editors. Atlas of procedures in Neonatology. 4th ed. Philadelphia: Lippincott Willimas & Wilkins; 2007. p. 186.

    Google Scholar 

  45. Schindler E, Kowald B, Suess H, et al. Catheterization of the radial or brachial artery in neonates and infants. Pediatr Anesth. 2005;15:677–82.

    Google Scholar 

  46. Morray JP, Brandford HG, Barnes LF, Oh SM, Furman EB. Doppler-assisted radial artery cannulation in infants and children. Anesth Analg. 1984;63(3):346–8.

    CAS  PubMed  Google Scholar 

  47. Lerman J, Coté CJ, Steward DJ. Manual of pediatric anesthesia; with an index of pediatric syndromes. 6th ed. 2009.

    Google Scholar 

  48. Bhananker SM, Liau DW, Kooner PK, et al. Liability related to peripheral venous and arterial catheterization: a closed claims analysis. Anesth Analg. 2009;109:124–9.

    PubMed  Google Scholar 

  49. Morray J, Todd S. A hazard of continuous flush systems for vascular pressure monitoring in infants. Anesthesiology. 1983;58:187–9.

    Google Scholar 

  50. Rorke JM, Ramasethu J, Chahine AA. Central venous catheterization. In: MacDonald MG, Ramasethu J, editors. Atlas of procedures in neonatology. 4th ed. Philadelphia: Lippincott Willimas & Wilkins; 2007. p. 199.

    Google Scholar 

  51. Meyer S, Sander J, Graber S, et al. Agreement of invasive versus non-invasive blood pressure in preterm neonates is not dependent on birth weight or gestational age. J Paediatr Child Health. 2010;46:249–54.

    PubMed  Google Scholar 

  52. Konig K, Casalaz DM, Burke EJ, et al. Accuracy of non-invasive blood pressure monitoring in very preterm infants. Intensive Care Med. 2012;38:670–6.

    PubMed  Google Scholar 

  53. Pejovic B, Peco-Antic A, Marinkovic-Eric J. Blood pressure in non-critically ill preterm and full-term neonates. Pediatr Nephrol. 2007;22:249–57.

    PubMed  Google Scholar 

  54. Tingay DG, Mun KS, Perkins EJ. End tidal carbon dioxide is as reliable as transcutaneous monitoring in ventilated postsurgical neonates. Arch Dis Child Fetal Neonatal Ed. 2013;98:F161–4.

    PubMed  Google Scholar 

  55. Singh BS, Gilbert U, Singh S, et al. Sidestream microstream end tidal carbon dioxide measurements and blood gas correlations in neonatal intensive care unit. Pediatr Pulmonol. 2013;48:250–6.

    PubMed  Google Scholar 

  56. Cassey JG, King RA, Armstrong P. Is there thermal benefit from preoperative warming in children? Paediatr Anaesth. 2010;20(1):63–71.

    PubMed  Google Scholar 

  57. Kent AL, Williams J. Increasing ambient operating theatre temperature and wrapping in polyethylene improves admission temperature in premature infants. J Paediatr Child Health. 2008;44(6):325–31.

    PubMed  Google Scholar 

  58. Buisson P, Bach V, Elabbassi EB, Chardon K, Delanaud S, Canarelli JP, et al. Assessment of the efficiency of warming devices during neonatal surgery. Eur J Appl Physiol. 2004;92(6):694–7.

    PubMed  Google Scholar 

  59. Tander B, Baris S, Karakaya D, Ariturk E, Rizalar R, Bernay F. Risk factors influencing inadvertent hypothermia in infants and neonates during anesthesia. Paediatr Anaesth. 2005;15(7):574–9.

    PubMed  Google Scholar 

  60. Lago P, Meneghini L, Chiandetti L, Tormena F, Metrangolo S, Gamba P. Congenital diaphragmatic hernia: intensive care unit or operating room? Am J Perinatol. 2005;22(4):189–97.

    PubMed  Google Scholar 

  61. Finer NN, Woo BC, Hayashi A, Hayes B. Neonatal surgery: intensive care unit versus operating room. J Pediatr Surg. 1993;28(5):645–9.

    CAS  PubMed  Google Scholar 

  62. Carbajal R, Rousset A, Danan C, Coquery S, Nolent P, Ducrocq S, et al. Epidemiology and treatment of painful procedures in neonates in intensive care units. JAMA. 2008;300(1):60–70.

    CAS  PubMed  Google Scholar 

  63. Anand KJ, Hall RW. Controversies in neonatal pain: an introduction. Semin Perinatol. 2007;31(5):273–4.

    CAS  PubMed  Google Scholar 

  64. Hall RW, Boyle E, Young T. Do ventilated neonates require pain management? Semin Perinatol. 2007;31(5):289–97.

    PubMed  Google Scholar 

  65. Kumar P, Denson SE, Mancuso TJ. Premedication for nonemergency endotracheal intubation in the neonate. Pediatrics. 2010;125(3):608–15.

    PubMed  Google Scholar 

  66. Bouchut JC, Godard J, Claris O. High-frequency oscillatory ventilation. Anesthesiology. 2004;100(4):1007–12.

    PubMed  Google Scholar 

  67. Goldsmith J, Karotkin E. Assisted ventilation of the neonate. 5th ed. Philadelphia: Saunders; 2010.

    Google Scholar 

  68. Bowen SL. Transport of the mechanically ventilated neonate. Respir Care Clin N Am. 2002;8(1):67–82.

    PubMed  Google Scholar 

  69. Schily M, Koumoukalis H, Lerman J, et al. Can pediatric anesthesiologists detect an occluded tracheal tube in neonates? Anesth Analg. 2001;93:66–70.

    CAS  PubMed  Google Scholar 

  70. Moore GP, Lawrence SL, Maharajh G, et al. Therapeutic strategies, including a high surgical ligation rate, for patent ductus arteriosus closure in extremely premature infants in a North American centre. Paediatr Child Health. 2012;17:e26–31.

    PubMed Central  PubMed  Google Scholar 

  71. Malviya MN, Ohlsson A, Shah SS. Surgical versus medical treatment with cyclooxygenase inhibitors for symptomatic patent ductus arteriosus in preterm infants. Cochrane Database Syst Rev. 2013;28(3), CD003951. pub 3.

    Google Scholar 

  72. Hazeem AAA, Gillespie MJ, Thun J, et al. Percutaneous closure of patent ductus arteriosus in small infants with significant lung disease may offer faster recovery of respiratory function when compared to surgical ligation. Catheter Cardiovasc Interv. 2013;82:526–33.

    PubMed  Google Scholar 

  73. Ko YC, Chang CI, Chiu IS, Chen YS, Huang SC, Hsieh WS. Surgical ligation of patent ductus arteriosus in very-low-birth-weight premature infants in the neonatal intensive care unit. J Formos Med Assoc. 2009;108(1):69–71.

    PubMed  Google Scholar 

  74. Raval MV, Laughon MM, Bose CL, Phillips JD. Patent ductus arteriosus ligation in premature infants: who really benefits, and at what cost? J Pediatr Surg. 2007;42(1):69–75.

    PubMed  Google Scholar 

  75. Gould DS, Montenegro LM, Gaynor JW, Lacy SP, Ittenbach R, Stephens P, et al. A comparison of on-site and off-site patent ductus arteriosus ligation in premature infants. Pediatrics. 2003;112(6 Pt 1):1298–301.

    PubMed  Google Scholar 

  76. Srinivasan PS, Brandler MD, D’Souza A. Necrotizing enterocolitis. Clin Perinatol. 2008;35(1):251–72.

    PubMed  Google Scholar 

  77. Spaeth JP, Kurth CD. The extremely premature infant (micropremie). In: Cote CJ, Lerman J, Todres ID, editors. A practice of anesthesia for infants and children. 5th ed. Philadelphia: Saunders Elsevier; 2013. p. 735–46.

    Google Scholar 

  78. Attridge JT, Herman AC, Gurka MJ, Griffin MP, McGahren ED, Gordon PV. Discharge outcomes of extremely low birth weight infants with spontaneous intestinal perforations. J Perinatol. 2006;26(1):49–54.

    CAS  PubMed  Google Scholar 

  79. Gordon PV, Attridge JT. Understanding clinical literature relevant to spontaneous intestinal perforations. Am J Perinatol. 2009;26(4):309–16.

    PubMed  Google Scholar 

  80. Klein KS, Aucott S, Donohue P, Repka M. Anesthetic and airway management during laser treatment for retinopathy of prematurity: a survey of US ophthalmologists and neonatologists. J AAPOS. 2013;17:221–2.

    PubMed  Google Scholar 

  81. Orge FH, Lee TJ, Walsh M, et al. Comparison of fentanyl and morphine in laser surgery for retinopathy of prematurity. J AAPOS. 2013;17:135–9.

    PubMed  Google Scholar 

  82. Haroon J, Chamberlain RS. An evidence-based review of the current treatment of congenital diaphragmatic hernia. Clin Pediatr. 2013;52:115–24.

    Google Scholar 

  83. Garriboli M, Duess JW, Ruttenstock E, et al. Trends in the treatment and outcome of congenital diaphragmatic hernia over the last decade. Pediatr Surg Int. 2012;28:1177–81.

    PubMed  Google Scholar 

  84. Dyamenahalli U, Morris M, Rycus P, et al. Short-term outcome of neonates with congenital heart disease and diaphragmatic hernia treated with extracorporeal membrane oxygenation. Ann Thorac Surg. 2013;95:1373–6.

    PubMed  Google Scholar 

  85. Park HW, Lee BS, Lim G, et al. A simplified formula using early blood gas analysis can predict survival outcomes and the requirements for extracorporeal membrane oxygenation in congenital diaphragmatic hernia. J Korean Med Sci. 2013;28:924–8.

    PubMed Central  PubMed  Google Scholar 

  86. Frischer JS, Stolar CJH. Extracorporeal membrane oxygenation. In: Holcomb III GW, Murphy JP, Ostlie DJ, editors. Ashcraft’s pediatric surgery. 5th ed. Philadelphia: Saunders Elsevier; 2010. p. 74–86.

    Google Scholar 

  87. Tsao K, Lally KP. Surgical management of the newborn with congenital diaphragmatic hernia. Fetal Diagn Ther. 2011;29:46–54.

    PubMed  Google Scholar 

  88. Fallon SC, Cass DL, Olutoye OO, Zamora IJ, Lazar DA, Larimer EL, Welty SE, Moise AA, Demny AB, Lee TC. Repair of congenital diaphragmatic hernias on extracorporeal membrane oxygenation (ECMO): Does early repair improve patient survival? J Pediatr Surg. 2013;48:1172–6.

    PubMed  Google Scholar 

  89. Dassinger MS, Copeland DR, Gossett J, Little DC, Jackson RJ, Smith SD. Early repair of congenital diaphragmatic hernia on extracorporeal membrane oxygenation. J Pediatr Surg. 2010;45(4):693–7.

    PubMed  Google Scholar 

  90. Horwitz JR, Cofer BR, Warner BW, et al. A multicenter trial of 6-aminocaproic acid (Amicar) in the prevention of bleeding in infants on ECMO. J Pediatr Surg. 1998;33:1610–13.

    CAS  PubMed  Google Scholar 

  91. Hocker JR, Saving KL. Fatal aortic thrombosis in a neonate during infusion of epsilon-aminocaproic acid. J Pediatr Surg. 1995;30:1490–2.

    CAS  PubMed  Google Scholar 

  92. Bryner BS, West BT, Hirschl RB, Drongowski RA, Lally KP, Lally P, et al. Congenital diaphragmatic hernia requiring extracorporeal membrane oxygenation: does timing of repair matter? J Pediatr Surg. 2009;44(6):1165–72.

    PubMed  Google Scholar 

  93. Haricharan RN, Barnhart DC, Cheng H, Delzell E. Identifying neonates at a very high risk for mortality among children with congenital diaphragmatic hernia managed with extracorporeal membrane oxygenation. J Pediatr Surg. 2009;44(1):87–93.

    PubMed  Google Scholar 

  94. Cote CJ, Wilson S. Guidelines for monitoring and management of pediatric patients during and after sedation for diagnostic and therapeutic procedures: an update. Paediatr Anaesth. 2008;18(1):9–10.

    PubMed  Google Scholar 

  95. Smevik B, Borthne A. Magnetic tomography–new imaging techniques and future perspectives. Tidsskr Nor Laegeforen. 2000;120(13):1557–61.

    CAS  PubMed  Google Scholar 

  96. Litman RS, Soin K, Salam A. Chloral hydrate sedation in term and preterm infants: an analysis of efficacy and complications. Anesth Analg. 2010;110:739–46.

    CAS  PubMed  Google Scholar 

  97. Mason KP, Zurakowski D, Zgleszewski SE, et al. High dose dexmedetomidine as the sole sedative for pediatric MRI. Pediatr Anesth. 2008;18:403–11.

    Google Scholar 

  98. Trevisanuto D, Giuliotto S, Cavallin F, et al. End-tidal carbon dioxide monitoring in very low birth weight infants: correlation and agreement with arterial carbon dioxide. Pediatr Pulmonol. 2013;47:367–72.

    Google Scholar 

  99. Potts AL, Warman GR, Anderson BJ. Dexmedetomidine disposition in children: a population analysis. Paediatr Anesth. 2008;18:722–30.

    Google Scholar 

  100. Kammer B, Helmberger H, Keser CM, Coppenrath E, Schneider K. Magnetic resonance imaging of pediatric patients. In: Reimer P, Parizel PM, Meaney JFM, Stichnoth FA, editors. Clinical MR imaging. New York: Springer; 2010. p. 611–762.

    Google Scholar 

  101. Schulte-Uentrop L, Goepfert MS. Anaesthesia or sedation for MRI in children. Curr Opin Anaesthesiol. 2010;23(4):513–17.

    PubMed  Google Scholar 

  102. Andropoulos DB, Stayer SA. An Anesthesiologist for all pediatric cardiac catheterizations: Luxury or necessity? J Cardiothorac Vasc Anesth. 2003;17(6):683–5.

    PubMed  Google Scholar 

  103. Malviya S, Burrows FA, Johnston AE, Benson LN. Anaesthetic experience with paediatric interventional cardiology. Can J Anaesth. 1989;36(3):320–4.

    CAS  PubMed  Google Scholar 

  104. Auden SM, Sobczyk WL, Solinger RE, Goldsmith LJ. Oral ketamine/midazolam is superior to intramuscular meperidine, promethazine, and chlorpromazine for pediatric cardiac catheterization. Anesth Analg. 2000;90(2):299–305.

    CAS  PubMed  Google Scholar 

  105. Hermanns H, Stevens MF, Werdehausean R, et al. Sedation during spinal anaesthesia in infants. Br J Anaesth. 2006;97:380–4.

    CAS  PubMed  Google Scholar 

  106. Welborn LG, Rice LJ, Hannallah RS, et al. Postoperative apnea in former preterm infants: prospective comparison of spinal and general anesthesia. Anesthesiology. 1990;72:838–42.

    CAS  PubMed  Google Scholar 

  107. Russell IA, Miller Hance WC, Gregory G, et al. The safety and efficacy of sevoflurane anesthesia in infants and children with congenital heart disease. Anesth Analg. 2001;92:1152–8.

    CAS  PubMed  Google Scholar 

  108. de Souza JC, Fraga JC. Is mortality rate influenced by the site of involvement in neonates undergoing laparotomy for necrotizing enterocolitis? J Pediatr Surg. 2009;44(8):1534–9.

    PubMed  Google Scholar 

  109. Attridge JT, Clark R, Gordon PV. New insights into spontaneous intestinal perforation using a national data set (3): antenatal steroids have no adverse association with spontaneous intestinal perforation. J Perinatol. 2006;26(11):667–70.

    CAS  PubMed  Google Scholar 

  110. Attridge JT, Clark R, Walker MW, Gordon PV. New insights into spontaneous intestinal perforation using a national data set: (1) SIP is associated with early indomethacin exposure. J Perinatol. 2006;26(2):93–9.

    CAS  PubMed  Google Scholar 

  111. Kelleher C, Langer JC. Congenital abdominal wall defects. In: Holcomb III GW, Murphy JP, Ostlie DJ, editors. Ashcraft’s pediatric surgery. 5th ed. Philadelphia: Saunders Elsevier; 2010.

    Google Scholar 

  112. Anand D, Etuwewe B, Clark D, Yoxall CW. Anaesthesia for treatment of retinopathy of prematurity. Arch Dis Child Fetal Neonatal Ed. 2007;92(2):F154–5.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Konduri GG, Kim UO. Advances in the diagnosis and management of persistent pulmonary hypertension of the newborn. Pediatr Clin North Am. 2009;56(3):579–600.

    Google Scholar 

  114. Heard C, Burrows F, Johnson K, et al. A comparison of dexmedetomidine-midazolam with propofol for maintenance of anesthesia in children undergoing magnetic resonance imaging. Anesth ANalg. 2008;107:1832–9.

    CAS  PubMed  Google Scholar 

  115. Nahata MC, Ootz MA, Krogg EA. Adverse effects of meperidine, promethazine, and chlorpromazine for sedation in pediatric patients. Clinical Pediatr. 1985;24:558–60.

    CAS  Google Scholar 

  116. Brown ET, Corbett SW, Green SM. Iatrogenic cardiopulmonary arrest during pediatric sedation with meperidine, promethazine, and chlorpromazine. Pediatr Emerg Care. 2001;17(5):351–3.

    CAS  PubMed  Google Scholar 

  117. Parks BR, Snodgrass SR. Reappraisal of lytic cocktail/demerol, phenergan, and thorazine (DPT) for the sedation of children. Pediatrics. 1996;97(5):779–80.

    CAS  PubMed  Google Scholar 

  118. Katznelson R, Mishaly D, Hegesh T, Perel A, Keidan I. Spinal anesthesia for diagnostic cardiac catheterization in high-risk infants. Pediatr Anesth. 2005;15:50–3.

    Google Scholar 

  119. Oklu E, Bulutcu FS, Yalcin Y, Ozbek U, Cakali E, Bayindir O. Which anesthetic agent alters the hemodynamic status during pediatric catheterization? Comparison of propofol versus ketamine. J Cardiothorac Vasc Anesth. 2003;17(6):686–90.

    CAS  PubMed  Google Scholar 

  120. Abbas SM, Rashid A, Latif H. Sedation for children undergoing cardiac catheterization: a review of literature. J Pak Med Assoc. 2012;62(2):159–63.

    PubMed  Google Scholar 

  121. Williams GD, Maan H, Ramamoorthy C, Kamra K, Bratton SL, Bair E, Kuan CC, Hammer GB, Feinstein JA. Perioperative complications in children with pulmonary hypertension undergoing general anesthesia with ketamine. Pediatr Anesth. 2010;20:28–37.

    Google Scholar 

  122. Kaynar A, Kelsaka E, Karakaya D, Sungur M, Baris S, Demirkaya M, Sarıhasan B, Baysal K. Effects of different doses of remifentanil infusion on hemodynamics and recovery in children undergoing pediatric diagnostic cardiac catheterization. J Cardiothorac Vasc Anesth. 2011;25(4):660–4.

    CAS  PubMed  Google Scholar 

  123. Dönmez A, Kizilkan A, Berksun H, Varan B, Tokel K. One center's experience with remifentanil infusions for pediatric cardiac catheterization. J Cardiothorac Vasc Anesth. 2001;15(6):736–9.

    PubMed  Google Scholar 

  124. Foubert L, Reyntjens K, de Wolf D, Suys B, Moerman A, Mortier E. Remifentanil infusion for cardiac catheterization in children with congenital heart disease. Acta Anaesthesiol Scand. 2002;46:355–60.

    CAS  PubMed  Google Scholar 

  125. Kunisawa T, Kurosawa A, Oikawa M, Mizobuchi M, Hayashi D, Iwasaki H. A high dose of dexmedetomidine using the BIS monitor™ for diagnostic and interventional cardiac catheterization in a toddler with congenital heart disease. J Anesth. 2012;26(2):254–8.

    PubMed  Google Scholar 

  126. Ülgey A, Aksu R, Bicer C, Akin A, Altuntaş R, Esmaoğlu A, Baykan A, Boyaci A. Is the addition of dexmedetomidine to a ketamine-propofol combination in pediatric cardiac catheterization sedation useful? Pediatr Cardiol. 2012;33(5):770–4.

    PubMed  Google Scholar 

  127. Ozcengiz D, Gunes Y, Atci M. Preliminary experience with dexmedetomidine in neonatal anesthesia. J Anaesth Clin Pharmacol. 2011;27(1):17–22.

    CAS  Google Scholar 

  128. Friesen RH, Nichols CS, Twite MD, Cardwell KA, Pan Z, Pietra B, Miyamoto SD, Auerbach SR, Darst JR, Ivy DD. The hemodynamic response to dexmedetomidine loading dose in children with and without pulmonary hypertension. Anesth Analg. 2013;117(4):953–9.

    CAS  PubMed  Google Scholar 

  129. Turner CJ, Lau KC, Sholler GF. Outcomes of interventional electrophysiology in children under 2 years of age. Cardiol Young. 2012;22(5):499–506.

    PubMed  Google Scholar 

  130. Trentman TL, Fassett SL, Mueller JT, Altemose GT. Airway interventions in the cardiac electrophysiology laboratory: a retrospective review. J Cardiothorac Vasc Anesth. 2009;23(6):841–5.

    PubMed  Google Scholar 

  131. Lu F, Lin J, Benditt DG. Conscious sedation and anesthesia in the cardiac electrophysiology laboratory. J Cardiovasc Electrophysiol. 2013;24(2):237–45.

    PubMed  Google Scholar 

  132. Odegard KC, Dinardo JA, Tsai-Goodman B, Powell AJ, Geva T, Laussen PC. Anaesthesia considerations for cardiac MRI in infants and small children. Pediatr Anesth. 2004;14:471–6.

    Google Scholar 

  133. Yılmazer MM, Üstyol A, Güven B, Öner T, et al. Complications of cardiac catheterization in pediatric patients: a single center experience. Turk J Pediatr. 2012;54:478–85.

    PubMed  Google Scholar 

  134. Bennett D, Marcus R, Stokes M. Incidents and complications during pediatric cardiac catheterization. Pediatr Anesth. 2005;15:1083–8.

    Google Scholar 

  135. Huang Y-C, Chang J-S, Lai Y-C, Li P-C. Importance of prevention and early intervention of adverse events in pediatric cardiac catheterization: a review of three years of experience. Pediatr Neonatol. 2009;50(6):280–6.

    PubMed  Google Scholar 

  136. Bergersen L, Marshall A, Gauvreau K, Beekman R, Hirsch R, et al. Adverse event rates in congenital cardiac catheterization – a multi-center experience. Catheter Cardiovasc Interv. 2010;75:389–400.

    PubMed  Google Scholar 

  137. Schneider DJ, Moore JW. Interventional cardiac catheterization in very small infants. Progr Pediatr Cardiol. 2001;14:27–33.

    Google Scholar 

  138. Carmosino MJ, Friesen RH, Doran A, Ivy DD. Perioperative complications in children with pulmonary hypertension undergoing noncardiac surgery or cardiac catheterization. Anesth Analg. 2007;104(3):521–7.

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher Heard MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this chapter

Cite this chapter

Heard, C., Lakshminrusimha, S., Lerman, J. (2015). Anesthesia Outside the Operating Room. In: Lerman, J. (eds) Neonatal Anesthesia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6041-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6041-2_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-6040-5

  • Online ISBN: 978-1-4419-6041-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics