Skip to main content

DigitalLung: Application of High-Performance Computing to Biological System Simulation

  • Conference paper
  • First Online:
Advances in Computational Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 680))

Abstract

The DigitalLung project represents an attempt to develop a multi-scale capability for simulating human respiration with application to predicting the effects of inhaled particulate matter. To accomplish this objective, DigitalLung integrates macroscale models of integrative human physiology, meso-to-microscale computational fluid dynamics simulations of a breathing human lung, meso-to-nanoscale particle transport and deposition models, and micro-to-nanoscale physical and chemical characterizations of particulate and their mass transfer through the mucosal layer to the epithelium. This chapter describes preliminary results and areas of ongoing research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Higenbottam T, Siddons T, Demoncheaux E. The direct and indirect action of inhaled agents on the lung and its circulation: Lessons for clinical science. Environ Health Perspect 2001, 109(4):559–562.

    PubMed  CAS  Google Scholar 

  2. Carveth HJ, Kanner RE. Optimizing deposition of aerosolized drug in the lung: A Review. MedGenMed 1999, 1(3).

    Google Scholar 

  3. Guyton AC, Coleman TG. Quantitative analysis of the pathophysiology of hypertension. Circ Res 1969, 24:1–19.

    Article  PubMed  CAS  Google Scholar 

  4. Guyton AC, Coleman TG, Granger HJ. Circulation: Overall regulation. Annu Rev Physiol 1972, 34:13–46.

    Article  PubMed  CAS  Google Scholar 

  5. Lohmeier TE, Hildebrandt DA, Warren S, May PJ, Cunningham JT. Recent insights into the interactions between the baroreflex and the kidneys in hypertension. Am J Physiol Regul Integr Comp Physiol 2005, 288:R828–R836.

    Article  PubMed  CAS  Google Scholar 

  6. Summers RL, Martin DS, Meck JV, Coleman TG. Computer systems analysis of spaceflight induced changes in left ventricular mass. Comput Biol Med 2007, 37:358–363.

    Article  PubMed  Google Scholar 

  7. Benignus VA, Coleman T, Eklund C, Kenyon E. A general physiological and toxicokinetic (GPAT) model for simulating complex toluene exposure scenarios in humans. Toxicol Mech Methods 2006, 16:27–36.

    Article  PubMed  CAS  Google Scholar 

  8. Ma B, Lutchen KR. An anatomically based hybrid computational model of the human lung and its application to low frequency oscillatory mechanics. Ann Biomed Eng 2006, 34(11):1691–1704.

    Article  PubMed  Google Scholar 

  9. Gemci T, Ponyavin V, Chen Y, Chen H, Collins R. Computational model of airflow in upper 17 generations of human respiratory tract. J Biomech 2008, 41:2047–2054.

    Article  PubMed  CAS  Google Scholar 

  10. Schmidt A, Zidowitz S, Kriete A, Denhard T, Krass S, Pietgen H-O. A digital reference model of the human bronchial tree. Comput Med Imaging Graph 2004, 28:203–211.

    Article  PubMed  Google Scholar 

  11. De Backer JW, Vos WG, Gorle CD, Germonpre P, Partoens B, Wuyts FL, Parizel PM, De Backer W. Flow analyses in the lower airways: Patient-specific model and boundary conditions. Med Eng Phys 2008, 30:872–879.

    Article  PubMed  Google Scholar 

  12. Ma B, Lutchen KR. CFD simulation of aerosol deposition in an anatomically based human large–medium airway model. Ann Biomed Eng 2009, 37:271–285.

    Article  PubMed  Google Scholar 

  13. Lin C-L, Tawhai MH, McLennan G, Hoffman EA. Characteristics of the turbulent laryngeal jet and its effect on airflow in the human intra-thoracic airways. Respir Physiol Neurobiol 2007, 157:295–309.

    Article  PubMed  Google Scholar 

  14. Xi J, Longest PW, Martonen TB. Effects of the laryngeal jet on nano and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways. J Appl Physiol 2008, 104:1761–1777.

    Article  PubMed  Google Scholar 

  15. Martonen TB, Schroeter JD, Hwang D, Fleming JS, Conway JH. Human lung morphology models for particle deposition studies. Inhal Toxicol 2000, 12(Suppl 4):109–121.

    Article  PubMed  CAS  Google Scholar 

  16. Asgharian B, Price OT, Hofmann W. Prediction of particle deposition in the human lung using realistic models of lung ventilation. Aerosol Sci 2006, 37:1209–1221.

    Article  CAS  Google Scholar 

  17. Nowak N, Kakade PP, Annapragada AV. Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann Biomed Eng 2003, 31:374–390.

    Article  PubMed  Google Scholar 

  18. Zhang Z, Kleinstreuer C, Kim C. Airflow and nanoparticle deposition in a 16-generation tracheobronchial airway model. Ann Biomed Eng 2008, 36:2095–2110.

    Article  PubMed  Google Scholar 

  19. Shi H, Kleinstreuer C, Zhang Z, Kim C. Nanoparticle transport and deposition in bifurcating tubes with different inlet conditions. Phys Fluids 2004, 16:2199–2213.

    Article  CAS  Google Scholar 

  20. Wang J, Lai A. A new drift-flux model for particle transport and deposition in human airways. J Biomech Eng 2006, 128:97–105.

    Article  PubMed  CAS  Google Scholar 

  21. Longest P, Xi J. Computational investigation of particle inertia effects on submicron aerosol deposition in the respiratory tract. J Aerosol Sci 2007, 38:111–130.

    Article  CAS  Google Scholar 

  22. Kunz R, Haworth D, Leemhuis L, Davison A, Zidowitz S, Kriete A. Eulerian multiphase CFD analysis of particle transport and deposition in the human lung. Presented at BIOMEDICINE 2003, April 2–4, 2003, Ljubljana, Slovenia.

    Google Scholar 

  23. Soni B, Lindley C, Thompson D. The combined effects of non-planarity and asymmetry on primary and secondary flows in the small bronchial tubes. Int J Num Meth Fluids 2009, 59:117–146.

    Article  CAS  Google Scholar 

  24. Hammersley J, Olson D. Physical models of the smaller pulmonary airways. J Appl Physiol 1992, 72:2402–2414.

    PubMed  CAS  Google Scholar 

  25. Soni B, Thompson D, Machiraju R. Visualizing particle/flow structure interactions in the small bronchial tubes. IEEE Trans Vis Comput Graph 2008, 14:1412–1419.

    Article  PubMed  Google Scholar 

  26. Haller G. Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 2001, 149:248–277.

    Article  CAS  Google Scholar 

  27. Walters DK, Luke W. 3-D Navier–Stokes simulation of large-scale regions of the bronchopulmonary tree. Proceedings of ASME International Mechanical Engineering Congress and Exposition 2009, Nov 13–19, 2009, Lake Buena Vista, FL.

    Google Scholar 

  28. Weibel ER. Morphology of the human lung. Academic, New York, 1963.

    Google Scholar 

Download references

Acknowledgments

This work has been partially funded by NSF (ITR/NGS-0326386, EPS-0556308) and NIH (HL 51971).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this paper

Cite this paper

Burgreen, G.W., Hester, R., Soni, B., Thompson, D., Walters, D.K., Walters, K. (2010). DigitalLung: Application of High-Performance Computing to Biological System Simulation. In: Arabnia, H. (eds) Advances in Computational Biology. Advances in Experimental Medicine and Biology, vol 680. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5913-3_63

Download citation

Publish with us

Policies and ethics