Skip to main content

Blimp1: Driving Terminal Differentiation to a T

  • Conference paper
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 780))

Abstract

B lymphocyte maturation-induced protein-1 (Blimp1) is a transcrip-tional repressor expressed in diverse cell types. In the adaptive immune system, Blimp1 is expressed in lymphocytes that have undergone effector differentiation. Blimp1 is a master regulator of plasma cell differentiation and plays important roles in controlling T cell homeostasis and effector differentiation. Blimp1 can be induced by a variety of cytokines including IL-2, IL-4, IL-12, and IL-21 in addition to TCR and co-stimulatory signals. Blimp1-deficient mice develop spontaneous inflammatory disease mediated by infiltration of activated T cells into tissues. During immune responses Blimp1 is required for the differentiation of plasma cells as well as short-lived CD8+ cytotoxic T cells. Mounting evidence suggests that Blimp1 plays a common role in the terminal differentiation of multiple cell subsets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Keller AD, Maniatis T (1991) Identification and characterization of a novel repressor of beta-interferon gene expression. Genes Dev 5:868–879

    PubMed  CAS  Google Scholar 

  2. Huang S (1994) Blimp-1 is the murine homolog of the human transcriptional repressor PRDI-BF1. Cell 78:9

    PubMed  CAS  Google Scholar 

  3. Turner CA Jr, Mack DH, Davis MM (1994) Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77:297–306

    PubMed  CAS  Google Scholar 

  4. Mock BA, Liu L, LePaslier D, Huang S (1996) The B-lymphocyte maturation promoting transcription factor BLIMP1/PRDI-BF1 maps to D6S447 on human chromosome 6q21-q22.1 and the syntenic region of mouse chromosome 10. Genomics 37:24–28

    PubMed  CAS  Google Scholar 

  5. Tunyaplin C, Shapiro MA, Calame KL (2000) Characterization of the B lymphocyte-induced maturation protein-1 (Blimp-1) gene, mRNA isoforms and basal promoter. Nucleic Acids Res 28:4846–4855

    PubMed  CAS  Google Scholar 

  6. Morgan MA et al (2009) Blimp-1/Prdm1 alternative promoter usage during mouse development and plasma cell differentiation. Mol Cell Biol 29:5813–5827

    PubMed  CAS  Google Scholar 

  7. Gyory I, Fejer G, Ghosh N, Seto E, Wright KL (2003) Identification of a functionally impaired positive regulatory domain I binding factor 1 transcription repressor in myeloma cell lines. J Immunol 170:3125–3133

    PubMed  Google Scholar 

  8. Keller AD, Maniatis T (1992) Only two of the five zinc fingers of the eukaryotic transcriptional repressor PRDI-BF1 are required for sequence-specific DNA binding. Mol Cell Biol 12:1940–1949

    PubMed  CAS  Google Scholar 

  9. Gyory I, Wu J, Fejer G, Seto E, Wright KL (2004) PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nat Immunol 5:299–308

    PubMed  CAS  Google Scholar 

  10. Yu J, Angelin-Duclos C, Greenwood J, Liao J, Calame K (2000) Transcriptional repression by Blimp-1 (PRDI-BF1) involves recruitment of histone deacetylase. Mol Cell Biol 20:2592–2603

    PubMed  CAS  Google Scholar 

  11. Ren B, Chee KJ, Kim TH, Maniatis T (1999) PRDI-BF1/Blimp-1 repression is mediated by co-repressors of the Groucho family of proteins. Genes Dev 13:125–137

    PubMed  CAS  Google Scholar 

  12. Su ST et al (2009) Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol Cell Biol 29:1421–1431

    PubMed  CAS  Google Scholar 

  13. Vincent SD et al (2005) The zinc finger transcriptional repressor Blimp1/Prdm1 is dispensable for early axis formation but is required for specification of primordial germ cells in the mouse. Development 132:1315–1325

    PubMed  CAS  Google Scholar 

  14. Kallies A et al (2006) Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat Immunol 7:466–474

    PubMed  CAS  Google Scholar 

  15. Kallies A et al (2007) Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 26:555–566

    PubMed  CAS  Google Scholar 

  16. Robertson EJ et al (2007) Blimp1 regulates development of the posterior forelimb, caudal pharyngeal arches, heart and sensory vibrissae in mice. Development 134:4335–4345

    PubMed  CAS  Google Scholar 

  17. Ohinata Y et al (2005) Blimp1 is a critical determinant of the germ cell lineage in mice. Nature 436:207–213

    PubMed  CAS  Google Scholar 

  18. Chang DH, Cattoretti G, Calame KL (2002) The dynamic expression pattern of B lymphocyte induced maturation protein-1 (Blimp-1) during mouse embryonic development. Mech Dev 117:305–309

    PubMed  CAS  Google Scholar 

  19. Magnusdottir E et al (2007) Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc Natl Acad Sci USA 104:14988–14993

    PubMed  CAS  Google Scholar 

  20. Horsley V et al (2006) Blimp1 defines a progenitor population that governs cellular input to the sebaceous gland. Cell 126:597–609

    PubMed  CAS  Google Scholar 

  21. Sellheyer K, Krahl D (2010) Blimp-1: a marker of terminal differentiation but not of sebocytic progenitor cells. J Cutan Pathol 37:362–370

    PubMed  Google Scholar 

  22. Kallies A et al (2004) Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J Exp Med 200:967–977

    PubMed  CAS  Google Scholar 

  23. Rutishauser RL et al (2009) Transcriptional repressor Blimp-1 promotes CD8(+) T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31:296–308

    PubMed  CAS  Google Scholar 

  24. Blink EJ et al (2005) Early appearance of germinal center-derived memory B cells and plasma cells in blood after primary immunization. J Exp Med 201:545–554

    PubMed  CAS  Google Scholar 

  25. Fairfax KA et al (2007) Different kinetics of blimp-1 induction in B cell subsets revealed by reporter gene. J Immunol 178:4104–4111

    PubMed  CAS  Google Scholar 

  26. Gonzalez-Garcia I, Ocana E, Jimenez-Gomez G, Campos-Caro A, Brieva JA (2006) Immunization-induced perturbation of human blood plasma cell pool: progressive maturation, IL-6 responsiveness, and high PRDI-BF1/BLIMP1 expression are critical distinctions between antigen-specific and nonspecific plasma cells. J Immunol 176:4042–4050

    PubMed  CAS  Google Scholar 

  27. Shapiro-Shelef M et al (2003) Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19:607–620

    PubMed  CAS  Google Scholar 

  28. Messika EJ et al (1998) Differential effect of B lymphocyte-induced maturation protein (Blimp-1) expression on cell fate during B cell development. J Exp Med 188:515–525

    PubMed  CAS  Google Scholar 

  29. Knodel M, Kuss AW, Berberich I, Schimpl A (2001) Blimp-1 over-expression abrogates IL-4- and CD40-mediated suppression of terminal B cell differentiation but arrests isotype switching. Eur J Immunol 31:1972–1980

    PubMed  CAS  Google Scholar 

  30. Chang DH, Angelin-Duclos C, Calame K (2000) BLIMP-1: trigger for differentiation of myeloid lineage. Nat Immunol 1:169–176

    PubMed  CAS  Google Scholar 

  31. Nishikawa K et al (2010) Blimp1-mediated repression of negative regulators is required for osteoclast differentiation. Proc Natl Acad Sci USA 107:3117–3122

    PubMed  CAS  Google Scholar 

  32. Miyauchi Y et al (2010) The Blimp1-Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis. J Exp Med 207:751–762

    PubMed  CAS  Google Scholar 

  33. Chan YH et al (2009) Absence of the transcriptional repressor Blimp-1 in hematopoietic lineages reveals its role in dendritic cell homeostatic development and function. J Immunol 183:7039–7046

    PubMed  CAS  Google Scholar 

  34. Kallies A et al (2011) A role for Blimp1 in the transcriptional network controlling natural killer cell maturation. Blood 117:1869–1879

    PubMed  CAS  Google Scholar 

  35. Smith MA et al (2010) PRDM1/Blimp-1 controls effector cytokine production in human NK cells. J Immunol 185:6058–6067

    Google Scholar 

  36. Martins GA et al (2006) Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat Immunol 7:457–465

    PubMed  CAS  Google Scholar 

  37. Kallies A, Xin A, Belz GT, Nutt SL (2009) Blimp-1 transcription factor is required for the differentiation of effector CD8(+) T cells and memory responses. Immunity 31:283–295

    PubMed  CAS  Google Scholar 

  38. Shin H et al (2009) A role for the transcriptional repressor Blimp-1 in CD8(+) T cell exhaustion during chronic viral infection. Immunity 31:309–320

    PubMed  CAS  Google Scholar 

  39. Santer-Nanan B et al (2006) Blimp-1 is expressed in human and mouse T cell subsets and leads to loss of IL-2 production and to defective proliferation. Signal Transduct 6:268–279

    Google Scholar 

  40. Kaech SM, Wherry EJ (2007) Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity 27:393–405

    PubMed  CAS  Google Scholar 

  41. Freitas AA, Rocha B (2000) Population biology of lymphocytes: the flight for survival. Annu Rev Immunol 18:83–111

    PubMed  CAS  Google Scholar 

  42. Sallusto F, Lanzavecchia A (2001) Exploring pathways for memory T cell generation. J Clin Invest 108:805–806

    PubMed  CAS  Google Scholar 

  43. Lefrancois L, Marzo AL (2006) The descent of memory T-cell subsets. Nat Rev Immunol 6:618–623

    PubMed  CAS  Google Scholar 

  44. Kallies A (2008) Distinct regulation of effector and memory T-cell differentiation. Immunol Cell Biol 86:325–332

    PubMed  CAS  Google Scholar 

  45. Ahmed R, Gray D (1996) Immunological memory and protective immunity: understanding their relation. Science 272:54–60

    PubMed  CAS  Google Scholar 

  46. Angelin-Duclos C, Cattoretti G, Lin KI, Calame K (2000) Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J Immunol 165:5462–5471

    PubMed  CAS  Google Scholar 

  47. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–712

    PubMed  CAS  Google Scholar 

  48. Sallusto F, Geginat J, Lanzavecchia A (2004) Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol 22:745–763

    PubMed  CAS  Google Scholar 

  49. Schluns KS, Kieper WC, Jameson SC, Lefrancois L (2000) Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1:426–432

    PubMed  CAS  Google Scholar 

  50. Bachmann MF, Wolint P, Schwarz K, Jager P, Oxenius A (2005) Functional properties and lineage relationship of CD8+ T cell subsets identified by expression of IL-7 receptor alpha and CD62L. J Immunol 175:4686–4696

    PubMed  CAS  Google Scholar 

  51. Kaech SM et al (2003) Selective expression of the interleukin 7 receptor identifies effector CD8 T cells that give rise to long-lived memory cells. Nat Immunol 4:1191–1198

    PubMed  CAS  Google Scholar 

  52. Huster KM et al (2004) Selective expression of IL-7 receptor on memory T cells identifies early CD40L-dependent generation of distinct CD8+ memory T cell subsets. Proc Natl Acad Sci USA 101:5610–5615

    PubMed  CAS  Google Scholar 

  53. Joshi NS et al (2007) Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 27:281–295

    PubMed  CAS  Google Scholar 

  54. Hikono H et al (2007) Activation phenotype, rather than central- or effector-memory phenotype, predicts the recall efficacy of memory CD8+ T cells. J Exp Med 204:1625–1636

    PubMed  CAS  Google Scholar 

  55. Kohlmeier JE et al (2008) The chemokine receptor CCR5 plays a key role in the early memory CD8+ T cell response to respiratory virus infections. Immunity 29:101–113

    PubMed  CAS  Google Scholar 

  56. Schutyser E, Struyf S, Van Damme J (2003) The CC chemokine CCL20 and its receptor CCR6. Cytokine Growth Factor Rev 14:409–426

    PubMed  CAS  Google Scholar 

  57. Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371

    PubMed  Google Scholar 

  58. Intlekofer AM et al (2007) Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J Exp Med 204:2015–2021

    PubMed  CAS  Google Scholar 

  59. Shaffer AL et al (2002) Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17:51–62

    PubMed  CAS  Google Scholar 

  60. Martins G, Calame K (2008) Regulation and functions of Blimp-1 in T and B lymphocytes. Annu Rev Immunol 26:133–169

    PubMed  CAS  Google Scholar 

  61. Cimmino L et al (2008) Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression. J Immunol 181:2338–2347

    PubMed  CAS  Google Scholar 

  62. Verbeek S et al (1995) An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374:70–74

    PubMed  CAS  Google Scholar 

  63. Rivera RR, Johns CP, Quan J, Johnson RS, Murre C (2000) Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 12:17–26

    PubMed  CAS  Google Scholar 

  64. Bain G, Quong MW, Soloff RS, Hedrick SM, Murre C (1999) Thymocyte maturation is regulated by the activity of the helix-loop-helix protein, E47. J Exp Med 190:1605–1616

    PubMed  CAS  Google Scholar 

  65. Rao RR, Li Q, Odunsi K, Shrikant PA (2010) The mTOR kinase determines effector versus memory CD8+ T cell fate by regulating the expression of transcription factors T-bet and Eomesodermin. Immunity 32:67–78

    PubMed  Google Scholar 

  66. Ichii H, Sakamoto A, Kuroda Y, Tokuhisa T (2004) Bcl6 acts as an amplifier for the generation and proliferative capacity of central memory CD8+ T cells. J Immunol 173:883–891

    PubMed  CAS  Google Scholar 

  67. Ichii H et al (2002) Role for Bcl-6 in the generation and maintenance of memory CD8+ T cells. Nat Immunol 3:558–563

    PubMed  CAS  Google Scholar 

  68. Ichii H et al (2007) Bcl6 is essential for the generation of long-term memory CD4+ T cells. Int Immunol 19:427–433

    PubMed  CAS  Google Scholar 

  69. Nutt SL, Fairfax KA, Kallies A (2007) BLIMP1 guides the fate of effector B and T cells. Nat Rev Immunol 7:923–927

    PubMed  CAS  Google Scholar 

  70. Bluestone JA, Mackay CR, O’Shea JJ, Stockinger B (2009) The functional plasticity of T cell subsets. Nat Rev Immunol 9:811–816

    PubMed  CAS  Google Scholar 

  71. Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489

    PubMed  CAS  Google Scholar 

  72. Nurieva RI et al (2009) Bcl6 mediates the development of T follicular helper cells. Science 325:1001–1005

    PubMed  CAS  Google Scholar 

  73. Johnston RJ et al (2009) Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325:1006–1010

    PubMed  CAS  Google Scholar 

  74. Yu D et al (2009) The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31:457–468

    PubMed  CAS  Google Scholar 

  75. Shaffer AL et al (2000) BCL-6 represses genes that function in lymphocyte differentiation, inflammation, and cell cycle control. Immunity 13:199–212

    PubMed  CAS  Google Scholar 

  76. Barnes MJ, Powrie F (2009) Regulatory T cells reinforce intestinal homeostasis. Immunity 31:401–411

    PubMed  CAS  Google Scholar 

  77. O’Garra A, Vieira PL, Vieira P, Goldfeld AE (2004) IL-10-producing and naturally occurring CD4+ Tregs: limiting collateral damage. J Clin Invest 114:1372–1378

    PubMed  Google Scholar 

  78. Cretney E et al (2011) The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12:304–311

    Google Scholar 

  79. Sun J et al (2011) CD4+ T cell help and innate-derived IL-27 induce Blimp-1-dependent IL-10 production by antiviral CTLs. Nat Immunol 12:327–334

    Google Scholar 

  80. Bertram EM, Dawicki W, Watts TH (2004) Role of T cell co-stimulation in anti-viral immunity. Semin Immunol 16:185–196

    PubMed  CAS  Google Scholar 

  81. Gong D, Malek TR (2007) Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J Immunol 178:242–252

    PubMed  CAS  Google Scholar 

  82. Smith KA (1988) Interleukin-2: inception, impact, and implications. Science 240:1169–1176

    PubMed  CAS  Google Scholar 

  83. Malek TR (2008) The biology of interleukin-2. Annu Rev Immunol 26:453–479

    PubMed  CAS  Google Scholar 

  84. D’Cruz LM, Klein L (2005) Development and function of agonist-induced CD25  +  Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6:1152–1159

    PubMed  Google Scholar 

  85. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY (2005) A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 6:1142–1151

    PubMed  CAS  Google Scholar 

  86. Martins GA, Cimmino L, Liao J, Magnusdottir E, Calame K (2008) Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J Exp Med 205:1959–1965

    PubMed  CAS  Google Scholar 

  87. Pipkin ME et al (2010) Interleukin-2 and inflammation induce distinct transcriptional programs that promote the differentiation of effector cytolytic T cells. Immunity 32:79–90

    PubMed  CAS  Google Scholar 

  88. Kalia V et al (2010) Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 32:91–103

    PubMed  CAS  Google Scholar 

  89. Bachmann MF, Wolint P, Walton S, Schwarz K, Oxenius A (2007) Differential role of IL-2R signaling for CD8+ T cell responses in acute and chronic viral infections. Eur J Immunol 37:1502–1512

    PubMed  CAS  Google Scholar 

  90. Williams MA, Tyznik AJ, Bevan MJ (2006) Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 441:890–893

    PubMed  CAS  Google Scholar 

  91. Liao W et al (2008) Priming for T helper type 2 differentiation by interleukin 2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat Immunol 9:1288–1296

    PubMed  CAS  Google Scholar 

  92. Wang L et al (2008) Blimp-1 induced by IL-4 plays a critical role in suppressing IL-2 production in activated CD4 T cells. J Immunol 181:5249–5256

    PubMed  CAS  Google Scholar 

  93. Kwon H et al (2009) Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31:941–952

    PubMed  CAS  Google Scholar 

  94. Spolski R, Leonard WJ (2008) Interleukin-21: basic biology and implications for cancer and autoimmunity. Annu Rev Immunol 26:57–79

    PubMed  CAS  Google Scholar 

  95. Ozaki K et al (2002) A critical role for IL-21 in regulating immunoglobulin production. Science 298:1630–1634

    PubMed  CAS  Google Scholar 

  96. Ozaki K et al (2004) Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of Blimp-1 and Bcl-6. J Immunol 173:5361–5371

    PubMed  CAS  Google Scholar 

  97. Ettinger R et al (2005) IL-21 induces differentiation of human naive and memory B cells into antibody-secreting plasma cells. J Immunol 175:7867–7879

    PubMed  CAS  Google Scholar 

  98. Ettinger R et al (2007) IL-21 and BAFF/BLyS synergize in stimulating plasma cell differentiation from a unique population of human splenic memory B cells. J Immunol 178:2872–2882

    PubMed  CAS  Google Scholar 

  99. Parrish-Novak J et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57–63

    PubMed  CAS  Google Scholar 

  100. Zeng R et al (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148

    PubMed  CAS  Google Scholar 

  101. Szabo SJ et al (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    PubMed  CAS  Google Scholar 

  102. Szabo SJ et al (2002) Distinct effects of T-bet in TH1 lineage commitment and IFN-gamma production in CD4 and CD8 T cells. Science 295:338–342

    PubMed  CAS  Google Scholar 

  103. Takemoto N, Intlekofer AM, Northrup JT, Wherry EJ, Reiner SL (2006) Cutting edge: IL-12 inversely regulates T-bet and eomesodermin expression during pathogen-induced CD8+ T cell differentiation. J Immunol 177:7515–7519

    PubMed  CAS  Google Scholar 

  104. Sprent J, Cho JH, Boyman O, Surh CD (2008) T cell homeostasis. Immunol Cell Biol 86:312–319

    PubMed  CAS  Google Scholar 

  105. Sciammas R et al (2006) Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25:225–236

    PubMed  CAS  Google Scholar 

  106. Matsuyama T et al (1995) Molecular cloning of LSIRF, a lymphoid-specific member of the interferon regulatory factor family that binds the interferon-stimulated response element (ISRE). Nucleic Acids Res 23:2127–2136

    PubMed  CAS  Google Scholar 

  107. Mittrucker HW et al (1997) Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275:540–543

    PubMed  CAS  Google Scholar 

  108. Rengarajan J et al (2002) Interferon regulatory factor 4 (IRF4) interacts with NFATc2 to modulate interleukin 4 gene expression. J Exp Med 195:1003–1012

    PubMed  CAS  Google Scholar 

  109. Lohoff M et al (2002) Dysregulated T helper cell differentiation in the absence of interferon regulatory factor 4. Proc Natl Acad Sci USA 99:11808–11812

    PubMed  CAS  Google Scholar 

  110. Brustle A et al (2007) The development of inflammatory T(H)-17 cells requires interferon-regulatory factor 4. Nat Immunol 8:958–966

    PubMed  Google Scholar 

  111. Zheng Y et al (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458:351–356

    PubMed  CAS  Google Scholar 

  112. Klein U et al (2006) Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol 7:773–782

    PubMed  CAS  Google Scholar 

  113. Schmitz ML, Krappmann D (2006) Controlling NF-kappaB activation in T cells by co-stimulatory receptors. Cell Death Differ 13:834–842

    PubMed  CAS  Google Scholar 

  114. Lin Y, Wong K, Calame K (1997) Repression of c-myc transcription by Blimp-1, an inducer of terminal B cell differentiation. Science 276:596–599

    PubMed  CAS  Google Scholar 

  115. Lehnertz B et al (2010) Activating and inhibitory functions for the histone lysine methyltransferase G9a in T helper cell differentiation and function. J Exp Med 207:915–922

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants and fellowships from the National Health and Medical Research Council of Australia (GTB, SLN, AK), the Sylvia and Charles Viertel Foundation and the Howard Hughes Medical Institute (GTB), the Pfizer Australia Research Fellowship (SLN), the Leukemia & Lymphoma Society and the Australian Research Council (AK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Kallies .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Businees Media, LLC

About this paper

Cite this paper

Xin, A., Nutt, S.L., Belz, G.T., Kallies, A. (2011). Blimp1: Driving Terminal Differentiation to a T. In: Pulendran, B., Katsikis, P., Schoenberger, S. (eds) Crossroads between Innate and Adaptive Immunity III. Advances in Experimental Medicine and Biology, vol 780. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5632-3_8

Download citation

Publish with us

Policies and ethics