Skip to main content

Development of Visual Sensorimotor Systems and Their Cognitive Mediation in Autism

  • Chapter
  • First Online:
Handbook of Growth and Growth Monitoring in Health and Disease

Abstract

Autism is a complex neurodevelopmental disorder with strong genetic components. Clinically, it is characterized by impairments in verbal and non-verbal communication and social interactions and the presence of stereotypical behaviors. A wide range of sensorimotor problems have been reported in autism, which include abnormalities in manual motor, postural, and oculomotor control. In this review, we focus on oculomotor impairments as a model system for investigating sensorimotor impairments and their cognitive control in this disorder. Basic aspects of sensorimotor control for saccadic and pursuit eye movements are impaired in this population. Development of visual systems that provide input to sensorimotor systems is also affected, and this may contribute to development of atypical visual sensorimotor behaviors. Cognitive mediation of sensorimotor systems is also impaired in autism. Maturation of brain systems that support cognitive control of eye movements appears to reach a developmental plateau earlier, and as a result, individuals with autism do not achieve the same developmental level of ability and performance in adulthood that is observed in typically developing individuals. Development of visual sensorimotor processing and its cognitive control in autism is heterogeneous, suggesting distinct patterns of atypical brain development in this disorder that may have different genetic etiology and clinical implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 429.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 549.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

Anterior cingulate cortex

CN:

Caudate nucleus

DLPFC:

Dorsolateral prefrontal cortex

FEF:

Frontal eye fields

MRI:

Magnetic resonance imaging

PCC:

Posterior cingulate cortex

PEF:

Parietal eye fields

PPC:

Posterior parietal cortex

SC:

Superior colliculus

SEF:

Supplementary eye fields

SNpr:

Substantia nigra pars reticulata

References

  • Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45.

    Article  PubMed  CAS  Google Scholar 

  • Barash S, Melikyan A, Sivakov A, Zhang M, Glickstein M, Thier P. Saccadic dysmetria and adaptation after lesions of the cerebellar cortex. J Neurosci. 1999;19:10931–9.

    PubMed  CAS  Google Scholar 

  • Cody H, Pelphrey K, Piven J. Structural and functional magnetic resonance imaging of autism. Int J Dev Neurosci. 2002;20:421–38.

    Article  PubMed  Google Scholar 

  • Courchesne E, Karns CM, Davis HR, Ziccardi R, Carper RA, Tigue ZD, Chisum HJ, Moses P, Pierce K, Lord C, Lincoln AJ, Pizzo S, Schreibman L, Haas RH, Akshoomoff NA, Courchesne RY. Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology. 2001;57:245–54.

    PubMed  CAS  Google Scholar 

  • D’Cruz AM, Mosconi MW, Steele S, Rubin LH, Luna B, Minshew N, Sweeney JA. Lateralized response timing deficits in autism. Biol Psychiatry. 2009;66:393–7.

    Article  PubMed  Google Scholar 

  • Edin F, Macoveanu J, Olesen P, Tegner J, Klingberg T. Stronger synaptic connectivity as a mechanism behind development of working memory-related brain activity during childhood. J Cogn Neurosci. 2007;19:750–60.

    Article  PubMed  Google Scholar 

  • Goldberg MC, Lasker AG, Zee DS, Garth E, Tien A, Landa RJ. Deficits in the initiation of eye movements in the absence of a visual target in adolescents with high functioning autism. Neuropsychologia. 2002;40:2039–49.

    Article  PubMed  CAS  Google Scholar 

  • Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS Jr. Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol. 2004;55:530–40.

    Article  PubMed  Google Scholar 

  • Johnston K, Everling S. Neurophysiology and neuroanatomy of reflexive and voluntary saccades in non-human primates. Brain Cogn. 2008;68:271–83.

    Article  PubMed  Google Scholar 

  • Kawakubo Y, Kasai K, Okazaki S, Hosokawa-Kakurai M, Watanabe K, Kuwabara H, Ishijima M, Yamasue H, Iwanami A, Kato N, Maekawa H. Electrophysiological abnormalities of spatial attention in adults with autism during the gap overlap task. Clin Neurophysiol. 2007;118:1464–71.

    Article  PubMed  Google Scholar 

  • Kemner C, van der Geest JN, Verbaten MN, van Engeland H. In search of neurophysiological markers of pervasive developmental disorders: smooth pursuit eye movements? J Neural Transm. 2004;111:1617–26.

    Article  PubMed  CAS  Google Scholar 

  • Kemper TL, Bauman ML. Neuropathology of infantile autism. Mol Psychiatry. 2002;7 Suppl 2:S12–3.

    Article  PubMed  Google Scholar 

  • Klein C, Feige B. An independent components analysis (ICA) approach to the study of developmental differences in the saccadic contingent negative variation. Biol Psychol. 2005;70:105–14.

    Article  PubMed  Google Scholar 

  • Klein C, Foerster F, Hartnegg K, Fischer B. Lifespan development of pro- and anti-saccades: multiple regression models for point estimates. Brain Res Dev Brain Res. 2005;160:113–23.

    Article  PubMed  CAS  Google Scholar 

  • Luna B, Minshew NJ, Garver KE, Lazar NA, Thulborn KR, Eddy WF, Sweeney JA. Neocortical system abnormalities in autism: an fMRI study of spatial working memory. Neurology. 2002;59:834–40.

    PubMed  CAS  Google Scholar 

  • Luna B, Garver KE, Urban TA, Lazar NA, Sweeney JA. Maturation of cognitive processes from late childhood to adulthood. Child Dev. 2004;75:1357–72.

    Article  PubMed  Google Scholar 

  • Luna B, Doll SK, Hegedus SJ, Minshew NJ, Sweeney JA. Maturation of executive function in autism. Biol Psychiatr. 2007;61:474–81.

    Article  Google Scholar 

  • Luna B, Velanova K, Geier CF. Development of eye-movement control. Brain Cogn. 2008;68:293–308.

    Article  PubMed  Google Scholar 

  • McDowell JE, Dyckman KA, Austin BP, Clementz BA. Neurophysiology and neuroanatomy of reflexive and volitional saccades: evidence from studies of humans. Brain Cogn. 2008;68:255–70.

    Article  PubMed  Google Scholar 

  • Milne E, Swettenham J, Campbell R. Motion perception and autistic spectrum disorder: a review. Curr Psychol Cogn. 2005;23:3–36.

    Google Scholar 

  • Minshew NJ, Luna B, Sweeney JA. Oculomotor evidence for neocortical systems but not cerebellar dysfunction in autism. Neurology. 1999;52:917–22.

    PubMed  CAS  Google Scholar 

  • Munoz DP, Armstrong IT, Hampton KA, Moore KD. Altered control of visual fixation and saccadic eye movements in attention-deficit hyperactivity disorder. J Neurophysiol. 2003;90:503–14.

    Article  PubMed  Google Scholar 

  • Reilly JL, Harris MS, Kechavan MS, Sweeney JA. Abnormalities in visually guided saccades suggest corticofugal dysregulation in never-treated schizophrenia. Biol Psychiatr. 2005;57(2):145–54.

    Article  Google Scholar 

  • Reilly JL, Lencer R, Bishop JR, Keedy S, Sweeney JA. Pharmacological treatment effects on eye movement control. Brain Cogn. 2008;68:415–35.

    Article  PubMed  Google Scholar 

  • Rosenhall U, Johansson E, Gillberg C. Oculomotor findings in autistic children. J Laryngol Otol. 1988;102:435–9.

    Article  PubMed  CAS  Google Scholar 

  • Scharre JE, Creedon MP. Assessment of visual function in autistic children. Optom Vis Sci. 1992;69:433–9.

    Article  Google Scholar 

  • Scherf KS, Sweeney JA, Luna B. Brain basis of developmental change in visuospatial working memory. J Cogn Neurosci. 2006;18:1045–58.

    Article  PubMed  Google Scholar 

  • Sweeney JA, Takarae Y, Macmillan C, Luna B, Minshew NJ. Eye movements in neurodevelopmental disorders. Curr Opin Neurol. (2004);17:37–42.

    Article  PubMed  Google Scholar 

  • Takagi M, Zee DS, Tamargo RJ. Effects of lesions of the oculomotor vermis on eye movements in primate: saccades. J Neurophysiol. 1998;80:1911–31.

    PubMed  CAS  Google Scholar 

  • Takarae Y, Minshew NJ, Luna B, Krisky CM, Sweeney JA. Pursuit eye movement deficits in autism. Brain. 2004a;127:2584–94.

    Article  PubMed  Google Scholar 

  • Takarae Y, Minshew NJ, Luna B, Sweeney JA. Oculomotor abnormalities parallel cerebellar histopathology in autism. J Neurol Neurosurg Psychiatry. 2004b;75:1359–61.

    Article  PubMed  CAS  Google Scholar 

  • Takarae Y, Minshew NJ, Luna B, Sweeney JA. Atypical involvement of frontostriatal systems during sensorimotor control in autism. Psychiatry Res. 2007;156:117–27.

    Article  PubMed  Google Scholar 

  • Takarae Y, Luna B, Minshew NJ, Sweeney JA. Patterns of visual sensory and sensorimotor abnormalities in autism vary in relation to history of early language delay. J Int Neuropsychol Soc. 2008;14:980–9.

    Article  PubMed  Google Scholar 

  • van der Geest JN, Kemner C, Camfferman G, Verbaten MN, van Engeland H. Eye movements, visual attention, and autism: a saccadic reaction time study using the gap and overlap paradigm. Biol Psychiatr. 2001;50:614–9.

    Article  Google Scholar 

  • Velanova K, Wheeler ME, Luna B. Maturational changes in anterior cingulate and frontoparietal recruitment support the development of error processing and inhibitory control. Cereb Cortex. 2008;18:2505–22.

    Article  PubMed  Google Scholar 

  • Waiter GD, Williams JH, Murray AD, Gilchrist A, Perrett DI, Whiten A. Structural white matter deficits in high-functioning individuals with autistic spectrum disorder: a voxel-based investigation. Neuroimage. 2005;24:455–61.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukari Takarae .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Takarae, Y., Luna, B., Sweeney, J.A. (2012). Development of Visual Sensorimotor Systems and Their Cognitive Mediation in Autism. In: Preedy, V. (eds) Handbook of Growth and Growth Monitoring in Health and Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1795-9_83

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1795-9_83

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1794-2

  • Online ISBN: 978-1-4419-1795-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics