Skip to main content

Sperm Processing for IVF

  • Chapter
  • First Online:
Practical Manual of In Vitro Fertilization

Abstract

The first sperm separation methods that were developed only comprised of one or two washing procedures to eliminate seminal plasma with subsequent resuspension of the male germ cells. Following these first reports on human sperm processing, more sophisticated methods were developed in order to obtain sufficient amounts of motile, functionally competent spermatozoa for IVF, one of them being a swim-up procedure from a washed cell pellet. Except for the first washing procedures, modern sperm processing techniques can be differentiated in migration, filtration, and density-gradient centrifugation. While for all migration techniques (conventional swim-up and migration-sedimentation), the sperm cells’ most obvious feature, self-propelled movement, is an essential prerequisite; the separation principle in the filtration and density-gradient centrifugation techniques is based on a combination of the sperms’ own motility and their adherence to filtration matrices and the retention at phase borders, respectively. Apart from possible financial considerations, sperm physiology and the physiology of the fertilization process have to be taken into account for any method of assisted reproduction in order to better select functional sperm or better protect and “preserve” sperm functions from damages caused by the separation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Edwards RG, Steptoe PC, Purdy JM. Establishing full term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynaecol. 1980;87:737–56.

    Article  PubMed  CAS  Google Scholar 

  2. Zalata AA, Christophe AB, Depuydt CE, et al. The fatty acid composition of phospholipids of spermatozoa from infertile patients. Mol Hum Reprod. 1998;4:111–8.

    Article  PubMed  CAS  Google Scholar 

  3. Khosrowbeygi A, Zarghami N. Fatty acid composition of human spermatozoa and seminal plasma levels of oxidative stress biomarkers in subfertile males. Prostaglandins Leukot Essent Fatty Acids. 2007;77:117–21.

    Article  PubMed  CAS  Google Scholar 

  4. Aitken RJ, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;40:183–97.

    Article  Google Scholar 

  5. Aitken RJ, Clarkson JS. Significance of reactive oxygen species and antioxidants in defining the efficacy of sperm preparation techniques. J Androl. 1988;9:367–76.

    PubMed  CAS  Google Scholar 

  6. Vigil P, Wöhler C, Bustos-Obregón E, et al. Assessment of sperm function in fertile and infertile men. Andrologia. 1994;26:55–60.

    Article  PubMed  CAS  Google Scholar 

  7. Lopes S, Jurisicova A, Sun JG, et al. Reactive oxygen species: potential cause for DNA fragmentation in human spermatozoa. Hum Reprod. 1998;13:896–900.

    Article  PubMed  CAS  Google Scholar 

  8. Henkel R, Hajimohammad M, Stalf T, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.

    Article  PubMed  CAS  Google Scholar 

  9. Chow CK. Vitamin E and oxidative stress. Free Radic Biol Med. 1991;11:215–32.

    Article  PubMed  CAS  Google Scholar 

  10. Niki E. Action of ascorbic acid as scavenger of active and stable oxygen radicals. Am J Clin Nutr. 1991;54:1119S–24.

    PubMed  CAS  Google Scholar 

  11. Kobayashi T, Miyazaki T, Natori M, et al. Protective role of superoxide dismutase in human sperm motility: superoxide dismutase activity and lipid peroxide in human seminal plasma and spermatozoa. Hum Reprod. 1991;6:987–91.

    PubMed  CAS  Google Scholar 

  12. Grootveldt M, Halliwell B. Measurement of allantoin and uric acid in human body fluids. Biochem J. 1987;242:803–8.

    Google Scholar 

  13. Li TK. The glutathione and thiol content of mammalian spermatozoa and seminal plasma. Biol Reprod. 1975;12:641–6.

    Article  PubMed  CAS  Google Scholar 

  14. Ha HC, Sirisoma NS, Kuppusamy P, et al. The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A. 1998;95:11140–5.

    Article  PubMed  CAS  Google Scholar 

  15. Alvarez JG, Lasso JL, Blasco L, et al. Centrifugation of human spermatozoa induces sublethal damage; separation of human spermatozoa from seminal plasma by a dextran swim-up procedure without centrifugation extends their motile life. Hum Reprod. 1993;8:1087–92.

    PubMed  CAS  Google Scholar 

  16. Agarwal A, Ikemoto I, Loughlin KR. Effect of sperm washing on levels of reactive oxygen species in semen. Arch Androl. 1994;33:157–62.

    Article  PubMed  CAS  Google Scholar 

  17. Henkel R, Kierspel E, Stalf T, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83:635–42.

    Article  PubMed  CAS  Google Scholar 

  18. Ford WCL. The role of oxygen free radicals in the pathology of human spermatozoa: implications of IVF. In: Matson PL, Lieberman BA, editors. Clinical IVF forum; current views in assisted reproduction. Manchester: Manchester University Press; 1990. p. 123–39.

    Google Scholar 

  19. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med. 1995;18:487–95.

    Article  PubMed  Google Scholar 

  20. Mortimer D. Sperm preparation techniques and iatrogenic failures of in vitro fertilization. Hum Reprod. 1991;6:173–6.

    PubMed  CAS  Google Scholar 

  21. Marchetti C, Obert G, Deffosez A, et al. Study of mitochondrial membrane potential, reactive oxygen species, DNA fragmentation and cell viability by flow cytometry in human sperm. Hum Reprod. 2002;17:1257–65.

    Article  PubMed  Google Scholar 

  22. Meseguer M, Garrido N, Martinez-Conejero JA, et al. Relationship between standard semen parameters, calcium, cholesterol contents, and mitochondrial activity in ejaculated spermatozoa from fertile and infertile males. J Assist Reprod Genet. 2004;21:445–51.

    Article  PubMed  Google Scholar 

  23. Henkel R, Fransman WO, Hipler UC, Wiegand C, Schreiber G, Menkveld R, Weitz F, Fisher D. Typha capensis (Rohrb.)N.E.Br. (bulrush) extract scavenges free radicals, inhibits collagenase activity and affects human sperm motility and mitochondrial membrane potential in vitro – A pilot study. Andrologia. 2011 Jul 6. doi: 10.1111/j.1439-0272.2011.01179.x. [Epub ahead of print].

    Google Scholar 

  24. Mortimer D. Sperm Transport in the Human Female Reproductive Tract. In: Finn CA, editor. Oxford Reviews of Reproductive Biology, vol. 5. Oxford: Oxford University Press; 1989. p. 30.

    Google Scholar 

  25. Yanagimachi R, Bhattacharyya A. Acrosome-reacted guinea pig spermatozoa become fusion competent in the presence of extracellular potassium ions. J Exp Zool. 1988;248(3):354–60.

    Article  PubMed  CAS  Google Scholar 

  26. Harrison RAP. Capacitation mechanisms, and the role of capacitation as seen in eutherian mammals. Reprod Fertil Dev. 1996;8:581–894.

    Article  PubMed  CAS  Google Scholar 

  27. de Lamirande E, Leclerc P, Gagnon C. Capacitation as a regulatory event that primes spermatozoa for the acrosome reaction and fertilization. Mol Hum Reprod. 1997;3:175–94.

    Article  PubMed  Google Scholar 

  28. Mortimer ST, Swan MA, Mortimer D. Effect of seminal plasma on capacitation and hyperactivation in human spermatozoa. Hum Reprod. 1998;13:2139–46.

    Article  PubMed  CAS  Google Scholar 

  29. De Jonge C. Biological basis for human capacitation. Hum Reprod Update. 2005;11:205–14.

    Article  PubMed  Google Scholar 

  30. Lopata A, Brown JB, Leeton JF, et al. In vitro fertilization of preovulatory oocytes and embryo transfer in infertile patients treated with clomiphene and human chorionic gonadotropin. Fertil Steril. 1978;30:27–35.

    PubMed  CAS  Google Scholar 

  31. Jequier AM. Male Infertility. Carlton, Australia: A Guide for the Clinician. Blackwell Science Pty Ltd.; 2000.

    Book  Google Scholar 

  32. World Health Organization. Laboratory Manual for the Examination of Human Semen and Sperm–Cervical Mucus Interaction. New York: Cambridge University Press; 1999.

    Google Scholar 

  33. Köhn FM, Schuppe HC, Jung A, et al. Das Spermiogramm—Praktische Anleitungen. 2. Auflage, CD-ROM, Justus-Liebig-Universität, Gieβen. 2002. www.agma.med.uni-giessen.de/spermiogramm

  34. Mahadevan M, Baker G. Assessment and preparation of semen for in vitro fertilization. In: Wood C, Trounson A, editors. Clinical in vitro fertilization. Berlin: Springer; 1984. p. 83–97.

    Chapter  Google Scholar 

  35. Tea NT, Jondet M, Scholler R. A migration-gravity sedimentation method for collecting motile spermatozoa from human semen. In: Harrison RF, Bonnar J, Thompson W, editors. In vitro fertilization, embryo transfer and early pregnancy. Lancaster: MTP; 1984. p. 117–20.

    Google Scholar 

  36. Sanchez R, Stalf T, Khanaga O, et al. Sperm selection methods for intracytoplasmic sperm injection (ICSI) in andrological patients. J Assist Reprod Genet. 1996;13:110–5.

    Google Scholar 

  37. Zavos PM, Abou-Abdallah M, Aslanis P, et al. Use of the multi-ZSC one-step standardized swim-up method: recovery of high-quality spermatozoa for intrauterine insemination or other forms of assisted reproductive technologies. Fertil Steril. 2000;74:834–5.

    Article  PubMed  CAS  Google Scholar 

  38. Hinting A, Lunardhi H. Better sperm selection for intracytoplasmic sperm injection with the side migration technique. Andrologia. 2001;33:343–6.

    Article  PubMed  CAS  Google Scholar 

  39. Paulson JD, Polakoski KL. A glass wool column procedure for removing extraneous material from the human ejaculate. Fertil Steril. 1977;28:178–81.

    PubMed  CAS  Google Scholar 

  40. Sanchez R, Concha M, Ichikawa T, et al. Glass wool filtration reduces reactive oxygen species by elimination of leukocytes in oligozoospermic patients with leukocytospermia. J Assist Reprod Genet. 1996;13:489–94.

    Article  PubMed  CAS  Google Scholar 

  41. Henkel RR, Schill WB. Sperm preparation for ART. Reprod Biol Endocrinol. 2003;1:108.

    Article  PubMed  Google Scholar 

  42. Henkel R, Franken DR, Lombard CJ, et al. The selective capacity of glass wool filtration for normal chromatin condensed human spermatozoa: a possible therapeutic modality for male factor cases? J Assist Reprod Genet. 1994;11:395–400.

    Article  PubMed  CAS  Google Scholar 

  43. Grunewald S, Miska W, Miska G, et al. Molecular glass wool filtration as a new tool for sperm preparation. Hum Reprod. 2007;22:1405–12.

    Article  PubMed  CAS  Google Scholar 

  44. Oosterhuis GJ, Mulder AB, Kalsbeek-Batenburg E, et al. Measuring apoptosis in human spermatozoa: a biological assay for semen quality? Fertil Steril. 2000;74:245–50.

    Article  PubMed  CAS  Google Scholar 

  45. Said T, Agarwal A, Grunewald S, et al. Selection of nonapoptotic spermatozoa as a new tool for enhancing assisted reproduction outcomes: an in vitro model. Biol Reprod. 2006;74:530–7.

    Article  PubMed  CAS  Google Scholar 

  46. Henkel R, Ichikawa T, Sanchez R, et al. Differentiation of ejaculates in which reactive oxygen species are generated by spermatozoa or leukocytes. Andrologia. 1997;29:295–301.

    Article  PubMed  CAS  Google Scholar 

  47. Gorus FK, Pipeleers DG. A rapid method for the fractionation of human spermatozoa according to their progressive motility. Fertil Steril. 1981;35:662–5.

    PubMed  CAS  Google Scholar 

  48. Arcidiacono A, Walt H, Campana A, et al. The use of Percoll gradients for the preparation of subpopulations of human spermatozoa. Int J Androl. 1983;6:433–45.

    Article  PubMed  CAS  Google Scholar 

  49. Pharmacia Biotech. Important notice: Percoll® not to be used in assisted reproduction technologies in humans. Pharmacia Biotech Inc., Piscataway, NJ, Dec 12, 1996.

    Google Scholar 

  50. Strehler E, Baccetti B, Sterzik K, et al. Detrimental effects of polyvinylpyrrolidone on the ultrastructure of spermatozoa (Notulae seminologicae 13). Hum Reprod. 1998;13:120–3.

    Article  PubMed  CAS  Google Scholar 

  51. Hammadeh ME, Kühnen A, Amer AS, et al. Comparison of sperm preparation methods: effect on chromatin and morphology recovery rates and their consequences on the clinical outcome after in vitro fertilization embryo transfer. Int J Androl. 2001;24:360–8.

    Article  PubMed  CAS  Google Scholar 

  52. Zini A, Gabriel MS, Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil Steril. 2007;87:217–9.

    Article  PubMed  Google Scholar 

  53. Morrell JM, Moffatt O, Sakkas D, et al. Reduced senescence and retained nuclear DNA integrity in human spermatozoa prepared by density gradient centrifugation. J Assist Reprod Genet. 2004;21:217–22.

    Article  PubMed  CAS  Google Scholar 

  54. Ricci G, Perticarari S, Boscolo R, et al. Semen preparation methods and sperm apoptosis: swim-up versus gradient-density centrifugation technique. Fertil Steril. 2009;91:632–8.

    Article  PubMed  Google Scholar 

  55. Zini A, Mak V, Phang D, et al. Potential adverse effect of semen processing on human sperm deoxyribonucleic acid integrity. Fertil Steril. 1999;72:496–9.

    Article  PubMed  CAS  Google Scholar 

  56. Zini A, Nam RK, Mak V, et al. Influence of initial semen quality on the integrity of human sperm DNA following semen processing. Fertil Steril. 2000;74:824–7.

    Article  PubMed  CAS  Google Scholar 

  57. Barroso G, Taylor S, Morshedi M, et al. Mitochondrial membrane potential integrity and plasma membrane translocation of phosphatidylserine as early apoptotic markers: a comparison of two different sperm subpopulations. Fertil Steril. 2006;85:149–54.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Henkel PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Henkel, R. (2012). Sperm Processing for IVF. In: Nagy, Z., Varghese, A., Agarwal, A. (eds) Practical Manual of In Vitro Fertilization. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1780-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1780-5_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1779-9

  • Online ISBN: 978-1-4419-1780-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics