Skip to main content

Protein Pharmaceuticals: Discovery and Preclinical Development

  • Chapter
Pharmaceutical Biotechnology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 655))

Abstract

Proteins are natural molecules that carry out important cellular functions within our bodies. Their precise role is crucial to the maintenance of good health. Malfunctioning proteins or those not produced optimally result in disease. The foundation of biopharmaceutical drug therapy has therefore been to modulate cellular function by targeting specific proteins expressed on or outside the cell. Because most biopharmaceuticals are natural in origin, they are biologically and chemically very different from conventional medicines. In addition to differences in mechanism of action, biopharmaceuticals differ in the process by which they get manufactured and delivered. Because of their large, complex structure, they must often be produced by culturing cells and then purified from a host of cellular components. This can be time-consuming and costly. Also, most biopharmaceuticals are given by injection under the skin or by infusion into the veins. This creates significant limitations to their utility. Nonetheless, biopharmaceuticals can be very powerful and selective in disease applications such as in rheumatoid arthritis or cancer. This chapter describes methods by which proteins drugs are discovered, optimized and developed. It also covers novel agents and next generation proteins as well as some of the challenges and opportunities in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Das RC, Morrow JK, Antibody Technologies Rise to New Challenges. Am Biotech Lab 2007; 25(8).

    Google Scholar 

  2. Maggon K. Monoclonal antibody “gold rush”. Curr Med Chem 2007; 14(18):1978–87.

    Article  CAS  PubMed  Google Scholar 

  3. Lawrence S. Billion dollar babies—biotech drugs as blockbusters. Nat Biotechnol 2007; 25(4):380–2.

    Article  CAS  PubMed  Google Scholar 

  4. Pavlou AK, Reichert JM. Recombinant protein therapeutics-success rates, market trends and values to 2010. Nat Biotechnol 2004; 22(12):1513–9.

    Article  CAS  PubMed  Google Scholar 

  5. Elliott S, Lorenzini T, Asher S et al. Enhancement of therapeutic protein in vivo activities through glycoengineering. Nat Biotechnol 2003; 21(4):414–21.

    Article  CAS  PubMed  Google Scholar 

  6. Kodituwakku AP, Jessup C, Zola H et al. Isolation of antigen-specific B-cells. Immunol Cell Biol 2003; 81(3):163–70.

    Article  CAS  PubMed  Google Scholar 

  7. Pirofski L, Casadevall A, Rodriguez L et al. Current state of the hybridoma technology. J Clin Immunol 1990; 10(6 Suppl):5S–12S.

    Article  CAS  PubMed  Google Scholar 

  8. Babcook JS, Leslie KB, Olsen OA et al. A novel strategy for generating monoclonal antibodies from single, isolated lymphocytes producing antibodies of defined specificities. Proc Natl Acad Sci USA 1996; 93(15):7843–8.

    Article  CAS  PubMed  Google Scholar 

  9. Marks JD, Hoogenboom HR, Bonnert TP et al. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 1991; 222(3):581–97.

    Article  CAS  PubMed  Google Scholar 

  10. Rothlisberger D, Honegger A, Pluckthun A. Domain interactions in the Fab fragments: a comparative evaluation of the single-chain Fv and Fab format engineered with variable domains of different stability. J Mol Biol 2005; 347(4):773–89.

    Article  PubMed  Google Scholar 

  11. Hust M, Jostock T, Menzel C et al. Single chain Fab (scFab) fragment. BMC Biotechnol 2007; 7:14.

    Article  PubMed  Google Scholar 

  12. Feldhaus MJ, Siegel RW, Opresko LK et al. Flow-cytometric isolation of human antibodies from a nonimmune Saccharomyces cerevisiae surface display library. Nat Biotechnol 2003; 21(2):163–70.

    Article  CAS  PubMed  Google Scholar 

  13. Poul MA, Becerril B, Nielsen UB et al. Selection of tumor-specific internalizing human antibodies from phage libraries. J Mol Biol 2000; 301(5):1149–61.

    Article  CAS  PubMed  Google Scholar 

  14. Trepel M, Arap W, Pasqualini R. In vivo phage display and vascular heterogeneity: implications for targeted medicine. Curr Opin Chem Biol 2002; 6(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  15. Hawkins RE, Russell SJ, Winter G. Selection of phage antibodies by binding affinity. Mimicking affinity maturation. J Mol Biol 1992; 226(3):889–96.

    Article  CAS  PubMed  Google Scholar 

  16. Rajpal A, Beyaz N, Haber L et al. A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci USA 2005; 102(24):8466–71.

    Article  CAS  PubMed  Google Scholar 

  17. Vasserot AP, Dickinson CD, Tang Y et al. Optimization of protein therapeutics by directed evolution. Drug Discov Today 2003; 8(3):118–26.

    Article  CAS  PubMed  Google Scholar 

  18. Stemmer WP. Rapid evolution of a protein in vitro by DNA shuffling. Nature 1994; 370(6488):389–91.

    Article  CAS  PubMed  Google Scholar 

  19. Hayes RJ, Bentzien J, Ary ML et al. Combining computational and experimental screening for rapid optimization of protein properties. Proc Natl Acad Sci USA 2002; 99(25):15926–31.

    Article  CAS  PubMed  Google Scholar 

  20. Sidhu SS, Field BK, Weiss GA. M13 bacteriophage coat proteins engineered for improved phage display. Methods Mol Biol 2007; 352:205–19.

    CAS  PubMed  Google Scholar 

  21. Lipovsek D, Pluckthun A. In vitro protein evolution by ribosome display and mRNA display. J Immunol Methods 2004; 290(1–2):51–67.

    Article  CAS  PubMed  Google Scholar 

  22. Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol 1997; 15(6):553–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hamann PR, Hinman LM, Hollander I et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 2002; 13(1):47–58.

    Article  CAS  PubMed  Google Scholar 

  24. Liu C, Tadayoni BM, Bourret LA et al. Eradication of large colon tumor xenografts by targeted delivery of maytansinoids. Proc Natl Acad Sci USA 1996; 93(16):8618–23.

    Article  CAS  PubMed  Google Scholar 

  25. Doronina SO, Toki BE, Torgov MY et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003; 21(7):778–84.

    Article  CAS  PubMed  Google Scholar 

  26. Seeherman H, Wozney JM. Delivery of bone morphogenetic proteins for orthopedic tissue regeneration. Cytokine Growth Factor Rev 2005; 16(3):329–45.

    Article  CAS  PubMed  Google Scholar 

  27. Jones PT, Dear PH, Foote J et al. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 1986; 321(6069):522–5.

    Article  CAS  PubMed  Google Scholar 

  28. Queen C, Schneider WP, Selick HE et al. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci USA 1989; 86(24):10029–33.

    Article  CAS  PubMed  Google Scholar 

  29. Mendez MJ, Green LL, Corvalan JR et al. Functional transplant of megabase human immunoglobulin loci recapitulates human antibody response in mice. Nat Genet 1997; 15(2):146–56.

    Article  CAS  PubMed  Google Scholar 

  30. Gill DS and Damle NK. Biopharmaceutical drug discovery using novel protein scaffolds. Curr Opin Biotechnol 2006 17(6):653–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Gill, D.S. (2009). Protein Pharmaceuticals: Discovery and Preclinical Development. In: Guzmán, C.A., Feuerstein, G.Z. (eds) Pharmaceutical Biotechnology. Advances in Experimental Medicine and Biology, vol 655. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1132-2_3

Download citation

Publish with us

Policies and ethics