Skip to main content

Cell Biology and Physiology of the Aging Central Auditory Pathway

  • Chapter
  • First Online:
The Aging Auditory System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 34))

Abstract

The most common manifestation of age-induced hearing loss, presbycusis, is the loss of sensitivity for high-frequency sounds, resulting in difficulties in speech perception, hearing in noisy backgrounds, and distorted loudness perception. These abnormalities typically involve progressive damage to the inner ear and spiral ganglion neurons, leading to a diminished input into the central auditory nervous system. The central components of the auditory system can also undergo direct morphological and physiological changes induced by the biological effects of aging. A combination of direct and secondary changes is most likely to contribute to the manifestations of the aging auditory system. This chapter describes the cell biological and physiological changes that occur during aging in experimental subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barsz K, Ison JR, Snell KB, Walton JP (2002) Behavioral and neural measures of auditory temporal acuity in aging humans and mice. Neurobiol Aging 23:565–578.

    Article  PubMed  Google Scholar 

  • Benowitz LI, Routtenberg A (1997) GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91.

    Article  CAS  PubMed  Google Scholar 

  • Benowitz LI, Apostolides PJ, Perrone-Bizzozero N, Finklestein SP, Zwiers H (1988) Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J Neurosci 8:339–352.

    CAS  PubMed  Google Scholar 

  • Bondy CA (1991) Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci 11:3442–3455.

    CAS  PubMed  Google Scholar 

  • Brawer JR, Morest DK (1975) Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J Comp Neurol 160:491–506.

    Article  CAS  PubMed  Google Scholar 

  • Brugge JF, Geisler CD (1978) Auditory mechanisms of the lower brainstem. Annu Rev Neurosci 1:363–394.

    Article  CAS  PubMed  Google Scholar 

  • Camarero G, Villar MA, Contreras J, Fernandez-Moreno C, Pichel JG, Avendano C, Varela-Nieto I (2002) Cochlear abnormalities in insulin-like growth factor-1 mouse mutants. Hear Res 170:2–11.

    Article  CAS  PubMed  Google Scholar 

  • Cant NB, Morest DK (1979) Organization of the neurons in the anterior division of the anteroventral cochlear nucleus of the cat. Light-microscopic observations. Neuroscience 4:1909–1923.

    Article  CAS  PubMed  Google Scholar 

  • Casey MA (1990) The effects of aging on neuron number in the rat superior olivary complex. Neurobiol Aging 11:391–394.

    Article  CAS  PubMed  Google Scholar 

  • Casey MA, Feldman ML (1985) Aging in the rat medial nucleus of the trapezoid body. II. Electron microscopy. J Comp Neurol 232:401–413.

    Article  CAS  PubMed  Google Scholar 

  • Casey MA, Feldman ML (1988) Age-related loss of synaptic terminals in the rat medial nucleus of the trapezoid body. Neuroscience 24:189–194.

    Article  CAS  PubMed  Google Scholar 

  • Caspary DM, Raza A, Lawhorn Armour BA, Pippin J, Arneric SP (1990) Immunocytochemical and neurochemical evidence for age-related loss of GABA in the inferior colliculus: implications for neural presbycusis. J Neurosci 10:2363–2372.

    CAS  PubMed  Google Scholar 

  • Caspary DM, Schatteman TA, Hughes LF (2005) Age-related changes in the inhibitory response properties of dorsal cochlear nucleus output neurons: role of inhibitory inputs. J Neurosci 25:10952–10959.

    Article  CAS  PubMed  Google Scholar 

  • Caspary DM, Hughes LF, Schatteman TA, Turner JG (2006) Age-related changes in the response properties of cartwheel cells in rat dorsal cochlear nucleus. Hear Res 216–217:207–215.

    Article  PubMed  Google Scholar 

  • Chance SA, Casanova MF, Switala AE, Crow TJ, Esiri MM (2006) Minicolumn thinning in temporal lobe association cortex but not primary auditory cortex in normal human ageing. Acta Neuropathol 111:459–464.

    Article  PubMed  Google Scholar 

  • Cosgrove JW, Atack JR, Rapoport SI (1987) Regional analysis of rat brain proteins during senescence. Exp Gerontol 22:187–198.

    Article  CAS  PubMed  Google Scholar 

  • Ene FA, Kalmbach A, Kandler K (2007) Metabotropic glutamate receptors in the lateral superior olive activate TRP-like channels: age- and experience-dependent regulation. J Neurophysiol 97:3365–3375.

    Article  CAS  PubMed  Google Scholar 

  • Eybalin M, Altschuler RA (1990) Immunoelectron microscopic localization of neurotransmitters in the cochlea. J Electron Microsc Tech 15:209–224.

    Article  CAS  PubMed  Google Scholar 

  • Fex J, Altschuler RA (1986) Neurotransmitter-related immunocytochemistry of the organ of Corti. Hear Res 22:249–263.

    Article  CAS  PubMed  Google Scholar 

  • Fex J, Altschuler RA, Kachar B, Wenthold RJ, Zempel JM (1986) GABA visualized by immunocytochemistry in the guinea pig cochlea in axons and endings of efferent neurons. Brain Res 366:106–117.

    Article  CAS  PubMed  Google Scholar 

  • Finlayson PG, Caspary DM (1993) Response properties in young and old Fischer-344 rat lateral superior olive neurons: a quantitative approach. Neurobiol Aging 14:127–139.

    Article  CAS  PubMed  Google Scholar 

  • Fischel-Ghodsian N (2003) Mitochondrial deafness. Ear Hear 24:303–313.

    Article  PubMed  Google Scholar 

  • Fitzakerley JL, Star KV, Rinn JL, Elmquist BJ (2000) Expression of Shal potassium channel subunits in the adult and developing cochlear nucleus of the mouse. Hear Res 147:31–45.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbons PJ, Gordon-Salant S (1996) Auditory temporal processing in elderly listeners. J Am Acad Audiol 7:183–189.

    CAS  PubMed  Google Scholar 

  • Gleich O (1994) The distribution of N-acetylgalactosamine in the cochlear nucleus of the gerbil revealed by lectin binding with soybean agglutinin. Hear Res 78:49–57.

    Article  CAS  PubMed  Google Scholar 

  • Green AR, Hainsworth AH, Jackson DM (2000) GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology 39:1483–1494.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez A, Khan ZU, Morris SJ, De Blas AL (1994) Age-related decrease of GABAA receptor subunits and glutamic acid decarboxylase in the rat inferior colliculus. J Neurosci 14:7469–7477.

    CAS  PubMed  Google Scholar 

  • Heffner RS, Heffner HE (1989) Sound localization, use of binaural cues and the superior olivary complex in pigs. Brain Behav Evol 33:248–258.

    Article  CAS  PubMed  Google Scholar 

  • Helfert RH, Sommer TJ, Meeks J, Hofstetter P, Hughes LF (1999) Age-related synaptic changes in the central nucleus of the inferior colliculus of Fischer-344 rats. J Comp Neurol 406:285–298.

    Article  CAS  PubMed  Google Scholar 

  • Hinks GL, Franklin RJ (2000) Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci 16:542–556.

    Article  CAS  PubMed  Google Scholar 

  • Hoffpauir BK, Grimes JL, Mathers PH, Spirou GA (2006) Synaptogenesis of the calyx of Held: rapid onset of function and one-to-one morphological innervation. J Neurosci 26:5511–5523.

    Article  CAS  PubMed  Google Scholar 

  • Huh Y, Lee W, Cho J, Ahn H (1998) Regional changes of NADPH-diaphorase and neuropeptide Y neurons in the cerebral cortex of aged Fischer 344 rats. Neurosci Lett 247:79–82.

    Article  CAS  PubMed  Google Scholar 

  • Idrizbegovic E, Canlon B, Bross LS, Willott JF, Bogdanovic N (2001) The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice: a quantitative study. Hear Res 158:102–115.

    Article  CAS  PubMed  Google Scholar 

  • Idrizbegovic E, Bogdanovic N, Viberg A, Canlon B (2003) Auditory peripheral influences on calcium binding protein immunoreactivity in the cochlear nucleus during aging in the C57BL/6J mouse. Hear Res 179:33–42.

    Article  CAS  PubMed  Google Scholar 

  • Idrizbegovic E, Salman H, Niu X, Canlon B (2006) Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice. Hear Res 216–217:198–206.

    Article  CAS  PubMed  Google Scholar 

  • Illing RB (2004) Maturation and plasticity of the central auditory system. Acta Otolaryngol Suppl Dec:6–10.

    Article  Google Scholar 

  • Illing RB, Horvath M, Laszig R (1997) Plasticity of the auditory brainstem: effects of cochlear ablation on GAP-43 immunoreactivity in the rat. J Comp Neurol 382:116–138.

    Article  CAS  PubMed  Google Scholar 

  • Iontov AS, Shefer VF (1984) The morphological basis of age-induced memory changes. Neurosci Behav Physiol 14:349–353.

    Article  CAS  PubMed  Google Scholar 

  • Jalenques I, Albuisson E, Despres G, Romand R (1995) Distribution of glial fibrillary acidic protein (GFAP) in the cochlear nucleus of adult and aged rats. Brain Res 686:223–232.

    Article  CAS  PubMed  Google Scholar 

  • Jalenques I, Burette A, Albuisson E, Romand R (1997) Age-related changes in GFAP-immunoreactive astrocytes in the rat ventral cochlear nucleus. Hear Res 107:113–124.

    Article  CAS  PubMed  Google Scholar 

  • Jenkins SA, Simmons DD (2006) GABAergic neurons in the lateral superior olive of the hamster are distinguished by differential expression of gad isoforms during development. Brain Res 1111:12–25.

    Article  CAS  PubMed  Google Scholar 

  • Kazee AM, West NR (1999) Preservation of synapses on principal cells of the central nucleus of the inferior colliculus with aging in the CBA mouse. Hear Res 133:98–106.

    Article  CAS  PubMed  Google Scholar 

  • Kazee AM, Han LY, Spongr VP, Walton JP, Salvi RJ, Flood DG (1995) Synaptic loss in the central nucleus of the inferior colliculus correlates with sensorineural hearing loss in the C57BL/6 mouse model of presbycusis. Hear Res 89:109–120.

    Article  CAS  PubMed  Google Scholar 

  • Kotak VC, Korada S, Schwartz IR, Sanes DH (1998) A developmental shift from GABAergic to glycinergic transmission in the central auditory system. J Neurosci 18:4646–4655.

    CAS  PubMed  Google Scholar 

  • Krenning J, Hughes LF, Caspary DM, Helfert RH (1998) Age-related glycine receptor subunit changes in the cochlear nucleus of Fischer-344 rats. Laryngoscope 108:26–31.

    Article  CAS  PubMed  Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I. Neuronal mechanisms. J Neurophysiol 60:1799–1822.

    CAS  PubMed  Google Scholar 

  • Lee HJ, Wallani T, Mendelson JR (2002) Temporal processing speed in the inferior colliculus of young and aged rats. Hear Res 174:64–74.

    Article  CAS  PubMed  Google Scholar 

  • Ling LL, Hughes LF, Caspary DM (2005) Age-related loss of the GABA synthetic enzyme glutamic acid decarboxylase in rat primary auditory cortex. Neuroscience 132:1103–1113.

    Article  CAS  PubMed  Google Scholar 

  • Luo L, Moore JK, Baird A, Ryan AF (1995) Expression of acidic FGF mRNA in rat auditory brainstem during postnatal maturation. Brain Res Dev Brain Res 86(1–2):24–34.

    Google Scholar 

  • Maison SF, Adams JC, Liberman MC (2003) Olivocochlear innervation in the mouse: immunocytochemical maps, crossed versus uncrossed contributions, and transmitter colocalization. J Comp Neurol 455:406–416.

    Article  CAS  PubMed  Google Scholar 

  • Maison SF, Rosahl TW, Homanics GE, Liberman MC (2006) Functional role of GABAergic innervation of the cochlea: phenotypic analysis of mice lacking GABA(A) receptor subunits alpha 1, alpha 2, alpha 5, alpha 6, beta 2, beta 3, or delta. J Neurosci 26(40):10315–10326.

    Google Scholar 

  • Masliah E, Fagan AM, Terry RD, DeTeresa R, Mallory M, Gage FH (1991a) Reactive synaptogenesis assessed by synaptophysin immunoreactivity is associated with GAP-43 in the dentate gyrus of the adult rat. Exp Neurol 113:131–142.

    Article  CAS  PubMed  Google Scholar 

  • Masliah E, Mallory M, Hansen L, Alford M, Albright T, DeTeresa R, Terry R, Baudier J, Saitoh T (1991b) Patterns of aberrant sprouting in Alzheimer’s disease. Neuron 6:729–739.

    Article  CAS  PubMed  Google Scholar 

  • Masterton RB (1992) Role of the central auditory system in hearing: the new direction. Trends Neurosci 15:280–285.

    Article  CAS  PubMed  Google Scholar 

  • May BJ (2000) Role of the dorsal cochlear nucleus in the sound localization behavior of cats. Hear Res 148:74–87.

    Article  CAS  PubMed  Google Scholar 

  • Mei Y, Gawai KR, Nie Z, Ramkumar V, Helfert RH (1999) Age-related reductions in the activities of antioxidant enzymes in the rat inferior colliculus. Hear Res 135:169–180.

    Article  CAS  PubMed  Google Scholar 

  • Mendelson JR, Lui B (2004) The effects of aging in the medial geniculate nucleus: a comparison with the inferior colliculus and auditory cortex. Hear Res 191:21–33.

    Article  CAS  PubMed  Google Scholar 

  • Milbrandt JC, Albin RL, Caspary DM (1994) Age-related decrease in GABAB receptor binding in the Fischer 344 rat inferior colliculus. Neurobiol Aging 15:699–703.

    Article  CAS  PubMed  Google Scholar 

  • Niu X, Trifunovic A, Larsson NG, Canlon B (2007) Somatic mtDNA mutations cause progressive hearing loss in the mouse. Exp Cell Res 313:3924–3934.

    Article  CAS  PubMed  Google Scholar 

  • Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35:21–23.

    Article  CAS  PubMed  Google Scholar 

  • Oestreicher AB, Gispen WH (1986) Comparison of the immunocytochemical distribution of the phosphoprotein B-50 in the cerebellum and hippocampus of immature and adult rat brain. Brain Res 375:267–279.

    Article  CAS  PubMed  Google Scholar 

  • Oliver DL (2000) Ascending efferent projections of the superior olivary complex. Microsc Res Tech 51:355–363.

    Article  CAS  PubMed  Google Scholar 

  • O’Neill WE, Zettel ML, Whittemore KR, Frisina RD (1997) Calbindin D-28k immunoreactivity in the medial nucleus of the trapezoid body declines with age in C57BL/6, but not CBA/CaJ, mice. Hear Res 112:158–166.

    Article  PubMed  Google Scholar 

  • Ouda L, Nwabueze-Ogbo FC, Druga R, Syka J (2003) NADPH-diaphorase-positive neurons in the auditory cortex of young and old rats. Neuroreport 14:363–366.

    Article  CAS  PubMed  Google Scholar 

  • Palombi PS, Caspary DM (1996) Responses of young and aged Fischer 344 rat inferior colliculus neurons to binaural tonal stimuli. Hear Res 100:59–67.

    Article  CAS  PubMed  Google Scholar 

  • Pickles JO (2004) Mutation in mitochondrial DNA as a cause of presbyacusis. Audiol Neurootol 9:23–33.

    Article  CAS  PubMed  Google Scholar 

  • Plinkert PK, Mohler H, Zenner HP (1989) A subpopulation of outer hair cells possessing GABA receptors with tonotopic organization. Arch Otorhinolaryngol 246:417–422.

    Article  CAS  PubMed  Google Scholar 

  • Plinkert PK, Gitter AH, Mohler H, Zenner HP (1993) Structure, pharmacology and function of GABA-A receptors in cochlear outer hair cells. Eur Arch Otorhinolaryngol 250:351–357.

    Article  CAS  PubMed  Google Scholar 

  • Raza A, Milbrandt JC, Arneric SP, Caspary DM (1994) Age-related changes in brainstem auditory neurotransmitters: measures of GABA and acetylcholine function. Hear Res 77:221–230.

    Article  CAS  PubMed  Google Scholar 

  • Reuss S, Schaeffer DF, Laages MH, Riemann R (2000) Evidence for increased nitric oxide production in the auditory brain stem of the aged dwarf hamster (Phodopus sungorus): an NADPH-diaphorase histochemical study. Mech Ageing Dev 112:125–134.

    Article  CAS  PubMed  Google Scholar 

  • Rhode WS, Greenberg S (1994) Encoding of amplitude modulation in the cochlear nucleus of the cat. J Neurophysiol 71:1797–1825.

    CAS  PubMed  Google Scholar 

  • Ruttiger L, Panford-Walsh R, Schimmang T, Tan J, Zimmermann U, Rohbock K, Kopschall I, Limberger A, Muller M, Fraenzer JT, Cimerman J, Knipper M (2007) BDNF mRNA expression and protein localization are changed in age-related hearing loss. Neurobiol Aging 28:586–601.

    Article  PubMed  Google Scholar 

  • Sanchez-Zuriaga D, Marti-Gutierrez N, De La Cruz MA, Peris-Sanchis MR (2007) Age-related changes of NADPH-diaphorase-positive neurons in the rat inferior colliculus and auditory cortex. Microsc Res Tech 70:1051–1059.

    Article  CAS  PubMed  Google Scholar 

  • Schmoll H, Ramboiu S, Platt D, Herndon JG, Kessler C, Popa-Wagner A (2005) Age influences the expression of GAP-43 in the rat hippocampus following seizure. Gerontology 51:215–224.

    Article  CAS  PubMed  Google Scholar 

  • Schneider B, Speranza F, Pichora-Fuller MK (1998) Age-related changes in temporal resolution: envelope and intensity effects. Can J Exp Psychol 52:184–191.

    CAS  PubMed  Google Scholar 

  • Schneider BA, Pichora-Fuller MK, Kowalchuk D, Lamb M (1994) Gap detection and the precedence effect in young and old adults. J Acoust Soc Am 95:980–991.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz DW, Schwarz IE, Hu K, Vincent SR (1988) Retrograde transport of [3H]-GABA by lateral olivocochlear neurons in the rat. Hear Res 32:97–102.

    Article  CAS  PubMed  Google Scholar 

  • Simon H, Frisina RD, Walton JP (2004) Age reduces response latency of mouse inferior colliculus neurons to AM sounds. J Acoust Soc Am 116:469–477.

    Article  PubMed  Google Scholar 

  • Sinha UK, Hollen KM, Rodriguez R, Miller CA (1993) Auditory system degeneration in Alzheimer’s disease. Neurology 43:779–785.

    CAS  PubMed  Google Scholar 

  • Snell KB, Mapes FM, Hickman ED, Frisina DR (2002) Word recognition in competing babble and the effects of age, temporal processing, and absolute sensitivity. J Acoust Soc Am 112:720–727.

    Article  PubMed  Google Scholar 

  • Stiebler I, Ehret G (1985) Inferior colliculus of the house mouse. I. A quantitative study of tonotopic organization, frequency representation, and tone-threshold distribution. J Comp Neurol 238:65–76.

    Article  CAS  PubMed  Google Scholar 

  • Tadros SF, D’Souza M, Zettel ML, Zhu X, Waxmonsky NC, Frisina RD (2007) Glutamate-related gene expression changes with age in the mouse auditory midbrain. Brain Res 1127:1–9.

    Article  CAS  PubMed  Google Scholar 

  • Thompson AM, Schofield BR (2000) Afferent projections of the superior olivary complex. Microsc Res Tech 51:330–354.

    Article  CAS  PubMed  Google Scholar 

  • Thompson GC, Cortez AM, Igarashi M (1986) GABA-like immunoreactivity in the squirrel monkey organ of Corti. Brain Res 372:72–79.

    Article  CAS  PubMed  Google Scholar 

  • Turner JG, Hughes LF, Caspary DM (2005) Affects of aging on receptive fields in rat primary auditory cortex layer V neurons. J Neurophysiol 94:2738–2747.

    Article  PubMed  Google Scholar 

  • Vaughan DW (1977) Age-related deterioration of pyramidal cell basal dendrites in rat auditory cortex. J Comp Neurol 171:501–515.

    Article  CAS  PubMed  Google Scholar 

  • Vaughan DW, Cahill CJ (1984) Long term effects of callosal lesions in the auditory cortex of rats of different ages. Neurobiol Aging 5:175–182.

    Article  CAS  PubMed  Google Scholar 

  • Vaughan DW, Vincent JM (1979) Ultrastructure of neurons in the auditory cortex of ageing rats: a morphometric study. J Neurocytol 8:215–228.

    Article  CAS  PubMed  Google Scholar 

  • von Hehn CA, Bhattacharjee A, Kaczmarek LK (2004) Loss of Kv3.1 tonotopicity and alterations in cAMP response element-binding protein signaling in central auditory neurons of hearing impaired mice. J Neurosci 24:1936–1940.

    Article  Google Scholar 

  • Walton JP, Frisina RD, Ison JR, O’Neill WE (1997) Neural correlates of behavioral gap detection in the inferior colliculus of the young CBA mouse. J Comp Physiol [A] 181:161–176.

    Article  CAS  Google Scholar 

  • Walton JP, Frisina RD, O’Neill WE (1998) Age-related alteration in processing of temporal sound features in the auditory midbrain of the CBA mouse. J Neurosci 18:2764–2776.

    CAS  PubMed  Google Scholar 

  • Walton JP, Simon H, Frisina RD (2002) Age-related alterations in the neural coding of envelope periodicities. J Neurophysiol 88:565–578.

    PubMed  Google Scholar 

  • Wang Y, Manis PB (2005) Synaptic transmission at the cochlear nucleus endbulb synapse during age-related hearing loss in mice. J Neurophysiol 94:1814–1824.

    Article  PubMed  Google Scholar 

  • Willott JF (1986) Effects of aging, hearing loss, and anatomical location on thresholds of inferior colliculus neurons in C57BL/6 and CBA mice. J Neurophysiol 56(2):391–408.

    Google Scholar 

  • Willott JF, Jackson LM, Hunter KP (1987) Morphometric study of the anteroventral cochlear nucleus of two mouse models of presbycusis. J Comp Neurol 260:472–480.

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Parham K, Hunter KP (1988) Response properties of inferior colliculus neurons in young and very old CBA/J mice. Hear Res 37(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Parham K, Hunter KP (1991) Comparison of the auditory sensitivity of neurons in the cochlear nucleus and inferior colliculus of young and aging C57BL/6J and CBA/J mice. Hear Res 53(1):78–94.

    Google Scholar 

  • Willot JF, Bross LS and McFadden SL, (1992) Morphology of the dorsal cochlear nucleus in young and aging C57BL76J and CBA/J mice. J. Comp. Neurol 321:666–678.

    Google Scholar 

  • Yamamoto Y, Matsubara A, Ishii K, Makinae K, Sasaki A, Shinkawa H (2002) Localization of gamma-aminobutyric acid A receptor subunits in the rat spiral ganglion and organ of Corti. Acta Otolaryngol 122:709–714.

    Article  CAS  PubMed  Google Scholar 

  • Yamasoba T, Someya S, Yamada C, Weindruch R, Prolla TA, Tanokura M (2007) Role of mitochondrial dysfunction and mitochondrial DNA mutations in age-related hearing loss. Hear Res 226:185–193.

    Article  CAS  PubMed  Google Scholar 

  • Zettel ML, Frisina RD, Haider SE, O’Neill WE (1997) Age-related changes in calbindin D-28k and calretinin immunoreactivity in the inferior colliculus of CBA/CaJ and C57Bl/6 mice. J Comp Neurol 386:92–110.

    Article  CAS  PubMed  Google Scholar 

  • Zettel ML, Zhu X, O’Neill WE, Frisina RD (2007) Age-related decline in Kv3.1b expression in the mouse auditory brainstem correlates with functional deficits in the medial olivocochlear efferent system. J Assoc Res Otolaryngol 8:280–293.

    Article  PubMed  Google Scholar 

  • Zheng QY, Yan D, Ouyang XM, Du LL, Yu H, Chang B, Johnson KR, Liu XZ (2005) Digenic inheritance of deafness caused by mutations in genes encoding cadherin 23 and protocadherin 15 in mice and humans. Hum Mol Genet 14:103–111.

    Article  CAS  PubMed  Google Scholar 

  • Jung DK, Lee SY, Kim D, Joo KM, Cha CI, Yang HS, Lee WB, Chung YH. (2005) Age-related changes in the distribution of Kvl.1 and Kv3.1 in rat cochlear nuclei. Neurol Res 27(4):436–440.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Canlon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Canlon, B., Illing, R.B., Walton, J. (2010). Cell Biology and Physiology of the Aging Central Auditory Pathway. In: Gordon-Salant, S., Frisina, R., Popper, A., Fay, R. (eds) The Aging Auditory System. Springer Handbook of Auditory Research, vol 34. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0993-0_3

Download citation

Publish with us

Policies and ethics