Skip to main content
  • 254 Accesses

Definition

A prerequisite for the analysis of crop responses to nitrogen (N) is the determination of the plant nitrogen content and repartition. How much N is incorporated within plants and crops? Within which plant tissue? For which physiological function? Thus, according to the answers to these questions, it is possible to determine a critical plant nitrogen status as the minimum plant N concentration that allows the maximum plant (or crop) growth rate. It has been demonstrated that this critical plant N concentration decreases as plant grows as the result of an ontogenetic plant architecture development leading to a dilution of Ncompounds within increasing proportion of free-N compounds as plant gets bigger. This N dilution process can be formulated through a negative power relationship between plant N concentration and crop mass. This critical N dilution curve allows the discrimination of situations of N deficiency (below the curve) and situations of N luxury consumption (above...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 6,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Critical plant N concentration:

Critical plant N concentration is defined as the minimum plant nitrogen concentration of a crop corresponding to its maximum crop mass.

Critical crop N uptake:

Critical crop N uptake is defined as the minimum crop nitrogen uptake for achieving maximum crop mass.

Harvest index (HI):

Harvest index (HI) is the ratio between harvested biomass Y (grains, tubers) and aboveground crop mass W at crop maturity.

Intercepted photosynthetic active radiation (IPAR):

Intercepted Photosynthetic Active Radiation (IPAR) is the proportion of the incident PAR which is intercepted by the crop at a given time. This proportion is related to the size of the canopy, the Leaf Area Index, and depends also on canopy structure: leaf angle and geometry.

Leaf area index (LAI):

Leaf area index (LAI) is the total canopy leaf area of a crop per unit of soil area. LAI allows the estimation of the proportion of the incident light which is intercepted by the canopy, and then which can be used for photosynthesis of the whole crop.

Nitrogen absorption efficiency (NAE):

Nitrogen absorption efficiency (NAE) is the increase in crop nitrogen uptake per unit of supplemental N supply rate.

Nitrogen conversion efficiency (NCE):

Nitrogen conversion efficiency (NCE) is the increase in crop dry mass (dW) or in crop yield (dY) per unit of supplemental crop N uptake corresponding to an increase in nitrogen supply rate.

Nitrogen use efficiency (NUE):

Nitrogen use efficiency (NUE) is the increase in crop dry mass (dW) or in crop yield (dY) per unit of supplemental N supply rate. So NUE = NAE × NCE.

N dilution:

N dilution is the process corresponding to more rapid accumulation of nitrogen-free compounds than nitrogen compounds within plant as plant grows, leading to decline in plant nitrogen concentration with plant mass accumulation.

Nitrogen nutrition index (NNI):

Nitrogen nutrition index (NNI) is an index which allows the estimation of the crop nitrogen status. This index is calculated at any moment as the ratio between the actual plant nitrogen concentration of the crop and the critical plant N concentration (see this definition) corresponding to the actual crop mass.

Photosynthetic active radiation (PAR):

Photosynthetic active radiation (PAR) is the part of solar radiation spectrum corresponding to wavelengths that are active for photosynthesis.

Radiation use efficiency (RUE):

Radiation use efficiency (RUE) is the ratio between the quantity of biomass accumulated within a crop and the quantity of photosynthetic active radiation (PAR) intercepted by this crop during the same period of time.

RuBPc-o:

Ribulose bisphophate carboxylase/oxygenase, the enzyme located within chloroplasts which allows the carboxylation of CO2.

Bibliography

Primary Literature

  1. Angus JF (2001) Nitrogen demand and supply in Australian agriculture. Aust J Exp Agr 41:277–288

    Article  CAS  Google Scholar 

  2. Eikhout B, Bouwman AF, Zeijts VH (2006) The role of nitrogen in world food production and food sustainability. Agric Ecosyst Environ 116:4–14

    Article  CAS  Google Scholar 

  3. London JG (2005) Nitrogen study fertilizes fears of pollution. Nature 433:791

    Article  CAS  Google Scholar 

  4. Beman JM, Arrigo K, Matson PM (2005) Agricultural runoff fuels large phytoplankton blooms in vulnerable areas of the ocean. Nature 434:211–214

    Article  CAS  Google Scholar 

  5. Ramos C (1996) Effect of agricultural practices on the nitrogen losses in environment. In: Rodriguez-Barrueco C (ed) Fertilizer and environment. Kluwer, Dordrecht, pp 335–361

    Google Scholar 

  6. Stulen I, Perez-Soba M, De kok LJ, Van Der Eerden (1998) Impact of gaseous nitrogen deposition on plant functioning. New Phytol 139:61–70

    Article  CAS  Google Scholar 

  7. Cassman KG (2007) Climate change, biofuels, and global food security. Environ Res Lett 2:11–12

    Article  Google Scholar 

  8. Addiscott TM, Withmore AP, Powlson DS (1991) Farming, fertilizers and nitrate problem. CAB International, Wallingford, p 170

    Google Scholar 

  9. Hirel B, Lemaire G (2005) From agronomy and ecophysiology to molecular genetics for improving nitrogen use efficiency in crops. J Crop Imp 15:213–257

    Article  CAS  Google Scholar 

  10. Evans JR (1983) Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol 72:297–302

    Article  CAS  Google Scholar 

  11. Lawlor DW (1995) Photosynthesis, productivity and environment. J Exp Bot 46:1449–1461

    Article  CAS  Google Scholar 

  12. Lawlor DW, Konturri M, Young AT (1989) Photosynthesis by flag leaves of wheat in relation to protein, ribulose biphosphate carboxylase activity and nitrogen supply. J Exp Bot 40:43–52

    Article  CAS  Google Scholar 

  13. Werger MJA (1991) Leaf nitrogen distribution and whole canopy photosynthetic carbon gain in herbaceous stands. Vegetatio 97:11–20

    Google Scholar 

  14. Nakano HM, Mae T (1997) The effects of elevated partial pressure of CO2 on the relationship between photosynthetic capacity and N content in rice leaves. Plant Physiol 115:191–198

    CAS  Google Scholar 

  15. Makino A, Mae T, Ohira K (1988) Differences between wheat and rice in the enzymic properties of ribulose-1, 5-biphosphate carboxylase/oxygenase and the relationship to photosynthetic gas exchange. Planta 174:30–38

    Article  CAS  Google Scholar 

  16. Theobald JC, Mitchell RAC, Parry MAJ, Lawlor DW (1998) Estimating the excess investment in ribulose-1, 5-bisphophate carboxylase/oxygenase in leaves of spring wheat grown under elevated CO2. Plant Physiol 118:945–955

    Article  CAS  Google Scholar 

  17. Sage RF (1987) The nitrogen use efficiency of C3 and C4 plants. I- Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 84:954–958

    Article  CAS  Google Scholar 

  18. Lawlor DW, Boyle FA, Keys AJ, Kendall AC, Young AT (1988) Nitrate nutrition and temperature effects on wheat: a synthesis of plant growth and nitrogen uptake in relation to metabolic and physiological processes. J Exp Bot 39:329–343

    Article  CAS  Google Scholar 

  19. Millard P (1988) The accumulation and storage of nitrogen by herbaceous plants. Plant Cell Environ 11:1–8

    Article  CAS  Google Scholar 

  20. Avice JC, Ourry A, Lemaire G, Volenec JJ, Boucaud J (1997) Root protein and vegetative storage protein are key organic nutrients for alfalfa shoot regrowth. Crop Sci 37:1187–1193

    Article  CAS  Google Scholar 

  21. Ourry A, McDuff JH, Ougham H (1996) The relationship between mobilisation of N reserves and changes in translatable messages following defoliation in Lolium temulentum L. and Lolium perenne L. J Exp Bot 47:739–747

    Article  CAS  Google Scholar 

  22. Lemaire G, Khaity M, Onillon B, Allirand JM, Chartier M, Gosse G (1992) Dynamics of accumulation and partitioning of N in leaves, stems and roots of lucerne in dense canopy. Ann Bot 70:429–435

    CAS  Google Scholar 

  23. Grindlay DJC, Sylvester-Bradley R, Scott RK (1995) The relationship between canopy green area and nitrogen in the shoot. In: Lemaire G, Burns IG (eds) Diagnostic procedures for crop N management. INRA Publication, Paris, pp 53–60, INRA-Editions, Collection “Les Colloques”

    Google Scholar 

  24. Lemaire G, van Oosterom E, Jeuffroz MH, Gastal F, Massignan A (2008) Crop species present different qualitative types of response to N deficiency during their vegetative growth. Field Crop Res 105:253–265

    Article  Google Scholar 

  25. McAdam JW, Volenec JJ, Nelson CJ (1989) Effects of nitrogen on mesophyll cell division and epidermal cell elongation in tall fescue leaf blades. Plant Physiol 89:549–556

    Article  Google Scholar 

  26. Gastal F, Nelson CJ (1994) Nitrogen use within growing leaf blade of tall fescue. Plant Physiol 105:191–197

    CAS  Google Scholar 

  27. Fricke W, McDonald AJS, Matson-Djos L (1997) Why do leaves and leaf cells of N-limited barley elongate at reduced rates? Planta 202:522–530

    Article  CAS  Google Scholar 

  28. Uhart SA, Andrade FH (1995) Nitrogen deficiency on maize. I- Effects on crop growth, development, dry matter partitioning and kernel set. Crop Sci 35:1376–1383

    Article  Google Scholar 

  29. Desmotes-Mainard S, Jeuffroy MH, Robin S (1999) Spike dry matter and nitrogen accumulation before anthesis in wheat as affected by nitrogen fertilizer: relationship to kernel per spike. Field Crop Res 64:249–259

    Article  Google Scholar 

  30. Mae T (1997) Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. In: Ando T (ed) Plant nutrition for sustainable food production and environment. Kluwer, Dordrecht, pp 51–60

    Chapter  Google Scholar 

  31. Lemaire G, Avice JC, Kim TH, Ourry A (2005) Development changes in shoot N dynamics of lucerne in relation to leaf growth dynamics as a function of plant density and hierarchical position within the canopy. J Exp Bot 56:935–943

    Article  CAS  Google Scholar 

  32. Lemaire G, Gastal F (2009) Quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen use efficiency. In: Sadras VO, Calderini DF (eds) Crop physiology: applications for genetic improvement and agronomy. Academic/Elsevier, Amsterdam, pp 171–199

    Google Scholar 

  33. Greenwood DJ, Lemaire G, Gosse G, Cruz P, Draycott A, Neeteson JJ (1990) Decline in percentage N of C3 and C4 crops with increasing plant mass. Ann Bot 66:425–436

    CAS  Google Scholar 

  34. Lemaire G, Jeuffroy MH, Gastal F (2008) Diagnostis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. Eur J Agron 28:614–624

    Article  CAS  Google Scholar 

  35. Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis on the nitrogen status in crops. Springer, Heidelberg, pp 3–43

    Chapter  Google Scholar 

  36. Justes E, Mary B, Meynard JM, Machet JM, Thellier-Huché L (1994) Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot 74:397–407

    Article  CAS  Google Scholar 

  37. Lemaire G, van Oosterom E, Sheehy J, Jeuffroy MH, Massignan A, Rossato L (2007) Is crop demand closely related to dry matter accumulation of leaf area expansion during vegetative growth? Field Crop Res 100:91–106

    Article  Google Scholar 

  38. Gastal F, Lemaire G (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot 53:789–799

    Article  CAS  Google Scholar 

  39. Lemaire G, Salette J (1984) Relation entre dynamique de croissance et dynamique de prélèvement d’azote par un peuplement de graminées fourragères. 1- Etude de l’effet du milieu. Agronomie 4:423–430

    Article  Google Scholar 

  40. Lemaire G, Salette J (1984) Relation entre dynamique de croissance et dynamique de prélèvement d’azote par un peuplement de graminées fourragères. 2- Etude de la variabilité entre génotypes. Agronomie 4:431–436

    Article  Google Scholar 

  41. Lemaire G, Cruz P, Gosse G, Chartier M (1985) Etude des relations entre la dynamique de prélèvement d’azote et la dynamique de croissance en matière sèche d’un peuplement de luzerne. Agronomie 5:685–692

    Article  Google Scholar 

  42. Ney B, Doré T, Sagan M (1997) The nitrogen requirement of major agricultural crops: grain legumes. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Heidelberg, pp 107–117

    Chapter  Google Scholar 

  43. Colnenne C, Meynard JM, Reau R, Justes E, Merrien A (1998) Determination of a critical nitrogen dilution curve for winter oilseed rape. Ann Bot 81:311–317

    Article  CAS  Google Scholar 

  44. Sheehy JE, Dionara MJA, Mitchell PL, Peng S, Cassman KG, Lemaire G, Williams RL (1998) Critical concentrations: implications for high-yielding rice (Oryza sativa, L.) cultivars in tropics. Field Crop Res 59:31–41

    Article  Google Scholar 

  45. Tei F, Benincasa P, Guidici M (2002) Critical nitrogen concentration in processing tomato. Eur J Agron 18:45–56

    Article  CAS  Google Scholar 

  46. Plénet D, Lemaire G (1999) Relationships between dynamics of nitrogen uptake and dry matter accumulation in maize crops. Determination of critical N concentration. Plant Soil 216:65–82

    Article  Google Scholar 

  47. Plénet D, Cruz P (1997) The nitrogen requirement for major agricultural crops: maize and sorghum. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Heidelberg, pp 93–106

    Chapter  Google Scholar 

  48. Duru M, Lemaire G, Cruz P (1997) The nitrogen requirement for major agricultural crops: grasslands. In: Lemaire G (ed) Diagnosis of nitrogen status in crops. Springer, Heidelberg, pp 56–72

    Google Scholar 

  49. Hardwick RC (1987) The nitrogen content of plants and the self thinning rule in plant ecology: a test of the core-skin hypothesis. Ann Bot 60:439–446

    Google Scholar 

  50. Ismande J, Touraine B (1994) N demand and regulation of nitrate uptake. Plant Physiol 105:3–7

    Google Scholar 

  51. Lejay L, Tillard P, Petit M, Olive FD, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3- uptake systems by N and C status of Arabidopsis plants. Plant J 18:509–519

    Article  CAS  Google Scholar 

  52. Forde BG (2002) The role of long-distance signaling in plant response to nitrate and other nutrients. J Exp Bot 53:39–43

    Article  CAS  Google Scholar 

  53. Glass ADM, Britto DT, Kaiser BN, Kinghorn JR, Kronzucker HJ, Kumar A, Okamoto M, Rwat S, Siddiqi MY, Unkless SE, Vidmar J (2002) The regulation of nitrate and ammonium transport systems in plants. J Exp Bot 53:855–864

    Article  CAS  Google Scholar 

  54. Devienne-Barret F, Justes E, Machet JM, mary B (2000) Integrated control of nitrate uptake by crop growth rate and soil nitrate availability under field conditions. Ann Bot 86:995–1005

    Article  CAS  Google Scholar 

  55. Lemaire G, Meynard JM (1997) Use of the nitrogen nutrition index for the analysis of agronomical data. In: Lemaire G (ed) Diagnosis of the nitrogen status in crops. Springer, Heidelberg, pp 45–56

    Chapter  Google Scholar 

  56. Angus JF, Moncur MW (1985) Models of growth and development of wheat in relation to plant nitrogen. Aust J Agr Res 36:537–544

    Article  Google Scholar 

  57. Jeuffroy MH, Bouchard C (1999) Intensity and duration of nitrogen deficiency on wheat grain number. Crop Sci 39:1385–1393

    Article  Google Scholar 

  58. Lemaire G, Plénet D, Grindlay D (1997) Leaf N content as an indicator of crop N nutrition. In: Lemaire G (ed) Diagnosis on the nitrogen status in crops. Springer, Heidelberg, pp 189–199

    Chapter  Google Scholar 

  59. Farrugia A, Gastal F, Scholefield D (2004) Assessement of nitrogen status of grasslands. Grass Forage Sci 59:113–120

    Article  Google Scholar 

  60. Ziadi N, Bélanger G, Gastal F, Claesses A, lemaire G, Tremblay N (2009) Leaf nitrogen concentration as an indicator of corn nitrogen status. Agron J 101:947–957

    Article  CAS  Google Scholar 

  61. Alam MM, Ladha JK, Rahman Khan S, Harun-Ur-Rashid Khan AH, Buresh RJ (2005) Leaf color chart for managing nitrogen fertilizer in lowland rice in Bangladesh. Agron J 97:949–959

    Article  Google Scholar 

  62. Peng S, Garcia FV, Laza RC, Sanico AL, Visperas RM, Cassman KG (1996) Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice. Field Crops Res 47:243–252

    Article  Google Scholar 

  63. Feibo W, Lianghuan W, Fuha X (1998) Chlorophyll meter to predict nitrogen side dress requirements for short-season cotton. Field Crop Res 56:309–314

    Article  Google Scholar 

  64. Le Bail M, Jeuffroy MH, Bouchard C, Barbotin A (2005) Is it possible to forecast the grain quality and yield of different varieties of winter wheat from minolta SPAD meter measurements? Eur J Agron 23:379–391

    Article  Google Scholar 

  65. Houlès V, Guérif M, Mary B (2007) Elaboration of a nutrition indicator for winter wheat blades on leaf area index and chlorophyll meter content for making nitrogen recommendations. Eur J Agron 27:1–11

    Article  CAS  Google Scholar 

  66. Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J Appl Ecol 9:747–766

    Article  Google Scholar 

  67. Bélanger G, Gastal F, Lemaire G (1992) Growth analysis of a tall fescue sward fertilized with different rates of nitrogen. Crop Sci 6:1371–1376

    Article  Google Scholar 

  68. Trapani N, Hall AJ (1996) Effects of leaf position and nitrogen supply on the expansion of leaves of field-grown sunflower. Plant Soil 184:331–340

    Article  CAS  Google Scholar 

  69. Muchow RC, Davis R (1998) Effect of nitrogen supply on the comparative productivity of maize and sorghum in a semi-arid tropical environment. II- radiation interception and biomass accumulation. Field Crop Res 18:17–30

    Article  Google Scholar 

  70. Bélanger G, Gastal F, Warembourg F (1994) Carbon balance on tall fescue: effects of nitrogen and growing season. Ann Bot 74:653–659

    Article  Google Scholar 

  71. Robson MJ, Parsons AJ (1978) Nitrogen deficiency in small closed communities of S24 ryegrass. I-Photosynthesis, respiration, dry matter production and partition. Ann Bot 42:1185–1197

    CAS  Google Scholar 

  72. Jarvis SC, McDuff JH (1989) Nitrate nutrition of grasses from steady state supplies in flowing solution culture following nitrate deprivation and/or defoliation. J Exp Bot 40:695–975

    Article  Google Scholar 

  73. Gastal F, Bélanger G, Lemaire G (1992) A model of the leaf extension rate of tall fescue in response to nitrogen and temperature. Ann Bot 70:437–442

    CAS  Google Scholar 

  74. Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:90–98

    Article  Google Scholar 

  75. Grindlay DJC (1997) Towards an explanation of crop nitrogen demand based on leaf nitrogen per unit leaf area. J Sci Food Agric 63:116–123

    Google Scholar 

  76. Van Keulen H, Goudrian J, Seligman NG (1989) Modelling the effects of nitrogen on canopy development and crop growth. In: Rusell G, Marshall LB, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, pp 83–104

    Chapter  Google Scholar 

  77. Gastal F, Bélanger G (1993) The effects of nitrogen fertilization and the growing season on photosynthesis of fied-grown tall fescue canopies. Ann Bot 72:401–408

    Article  CAS  Google Scholar 

  78. Connor DJ, Hall AJ, Sadras VO (1993) Effects of nitrogen content on the photosynthetic characteristics of sunflower crops during grain filling. Aust J Plant Physiol 20:251–263

    Article  CAS  Google Scholar 

  79. Fischer RA (1993) Irrigated spring wheat and timing and amount of nitrogen fertilizer. II-Physiology of grain yield response. Field Crop Res 33:57–80

    Article  Google Scholar 

  80. Martre P, Porter JR, Jamieson PD, Triboï E (2003) Modelling grain nitrogen accumulation and protein composition to understand the sink/source regulations of nitrogen utilization in wheat. Plant Physiol 133:1959–1967

    Article  CAS  Google Scholar 

  81. Desmotes-Mainard S, Jeuffroy MH (2004) Effects of nitrogen and radiation on dry matter and nitrogen accumulation in spike of winter wheat. Field Crop Res 87:221–233

    Article  Google Scholar 

  82. Dreccer MF (2005) Nitrogen use at the leaf and canopy level: a framework to improve N use efficiency. J Crop Imp 15:97–125

    Article  CAS  Google Scholar 

  83. Borell A, Hammer GL (2000) Nitrogen dynamics and the physiological basis for stay-green in sorghum. Crop Sci 40:1295–1307

    Article  Google Scholar 

  84. Mi C, Liu J, Chen F, Zhang F, Cui Z, Liu X (2003) Nitrogen uptake and remobilization in maize hybrids differing in leaf senescence. J Plant Nutr 26:447–459

    Article  CAS  Google Scholar 

  85. Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Article  Google Scholar 

  86. Borell A, Garside AL, Fukaï S, Reid DJ (1998) Season nitrogen rate and plant type affect nitrogen uptake and nitrogen use efficiency in rice. Aust J Agr Res 49:829–843

    Article  Google Scholar 

  87. Le Gouis J, Béghin D, Heumez E, Pluchard P (2000) Genetic differences for nitrogen uptake and nitrogen utilization efficiencies in winter wheat. Eur J Agron 12:163–173

    Article  CAS  Google Scholar 

  88. Bertin P, Gallais A (2001) Physiological and genetic basis of nitrogen use efficiency on maize. Maydica 46:53–68

    Google Scholar 

  89. Lemaire G, Charrier X, Hébert Y (1996) Nitrogen uptake capacities of maize and sorghum crops in different nitrogen and water supply conditions. Agronomie 16:231–246

    Article  Google Scholar 

  90. Lemaire G, Recous S, Mary B (2004) Managing residues and nitrogen in intensive cropping systems. New understandings for efficient recovery by crops. In: Proceedings of the 4th international crop science congress, Brisbane, Australia, 2004

    Google Scholar 

  91. Laperche A, Devienne-Barret F, Maury O, Le Gouis J, Ney B (2007) A simplified conceptual model of carbon and nitrogen functioning for QTL analysis of winter wheat adaptation to nitrogen deficiency. Theor Appl Genet 113:1131–1146

    Article  CAS  Google Scholar 

  92. Camus-Kulandaivelu L, Veyreiras JB, Madur D, Combes V, Fourman M, Barraud S, Dubreuil P, Gouesnard B, Manicacci D, Charcosset A (2006) Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf 8 gene. Genetics 172:2449–2463

    Article  CAS  Google Scholar 

  93. Singh U, Ladha JK, Castillo EG, Punzalan G, Tirol-Padre A, Duqueza M (1998) Genotypic variation in nitrogen use efficiency. I-medium and long-duration rice. Field Crop Res 58:35–53

    Article  Google Scholar 

  94. Sadras VO (2006) The N:P stoichiometry of cereal, grain legume and oilseed crops. Field Crop Res 95:13–29

    Article  Google Scholar 

Books and Reviews

  • Gastal F, Lemaire G (2002) N uptake and distribution in crops: an agronomical and ecophysiological perspective. J Exp Bot 53:789–799

    Article  CAS  Google Scholar 

  • Grindlay DJC (1997) Towards an explanation of crop nitrogen demand based on leaf nitrogen per unit leaf area. J Sci Food Agric 63:116–123

    Google Scholar 

  • Hirel B, Lemaire G (2005) From agronomy and ecophysiology to molecular genetics for improving nitrogen use efficiency in crops. J Crop Imp 15:213–257

    Article  CAS  Google Scholar 

  • Justes E, Mary B, Meynard JM, Machet JM, Thellier-Huché L (1994) Determination of a critical nitrogen dilution curve for winter wheat crops. Ann Bot 74:397–407

    Article  CAS  Google Scholar 

  • Lemaire G, Gastal F (1997) N uptake and distribution in plant canopies. In: Lemaire G (ed) Diagnosis on the nitrogen status in crops. Springer, Heidelberg, pp 3–43

    Chapter  Google Scholar 

  • Lemaire G, Gastal F (2009) Quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen use efficiency

    Google Scholar 

  • Lemaire G, Jeuffroy MH, Gastal F (2008) Diagnostis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. Eur J Agron 28:614–624

    Article  CAS  Google Scholar 

  • Lemaire G, Recous S, Mary B (2004) Managing residues and nitrogen in intensive cropping systems. New understandings for efficient recovery by crops. In: Proceedings of the 4th international crop science congress, Brisbane, Australia, 2004

    Google Scholar 

  • Lemaire G, van Oosterom E, Jeuffroz MH, Gastal F, Massignan A (2008) Crop species present different qualitative types of response to N deficiency during their vegetative growth. Field Crop Res 105:253–265

    Article  Google Scholar 

  • Lemaire G, van Oosterom E, Sheehy J, Jeuffroy MH, Massignan A, Rossato L (2007) Is crop demand closely related to dry matter accumulation of leaf area expansion during vegetative growth? Field Crop Res 100:91–106

    Article  Google Scholar 

  • Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29:90–98

    Article  Google Scholar 

  • Sinclair TR (1998) Historical changes in harvest index crop N accumulation. Crop Sci 38:638–643

    Article  Google Scholar 

  • Van Keulen H, Goudrian J, Seligman NG (1989) Modelling the effects of nitrogen on canopy development and crop growth. In: Rusell G, Marshall LB, Jarvis PG (eds) Plant canopies: their growth, form and function. Cambridge University Press, Cambridge, pp 83–104

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Lemaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Lemaire, G. (2012). Crop Responses to Nitrogen . In: Meyers, R.A. (eds) Encyclopedia of Sustainability Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-0851-3_385

Download citation

Publish with us

Policies and ethics