Skip to main content

Medical Data Visualization: Toward Integrated Clinical Workstations

  • Chapter
  • First Online:
Medical Imaging Informatics

Abstract

As our ability to access the abundance of clinical data grows, it is imperative that methods to organize and to visualize this information be in place so as not to overwhelm users: increasingly, users are faced with information overload. Moreover, the manner of presentation is fundamental to how such information is interpreted, and can be the turning point in uncovering new insights and knowledge about a patient or a disease. And of course, medical imaging is itself an inherently visual medium. This chapter presents work related to the visualization of medical data, focusing on issues related to navigation and presentation by drawing upon imaging and other disciplines for examples of display and integration methods. We first cover different visual paradigms that have been developed (e.g., icons, graphs), grouped along dimensions that emphasize the different types of data relationships and workflow. Subsequently, issues related to combining these visualizations are given. As no single graphical user interface (GUI) can accommodate all users and the spectrum of tasks seen in the healthcare environment, the ultimate goal is to create an adaptive graphical interface that integrates clinical information so as to be conducive to a given user's objectives: efforts in this direction are discussed. Throughout, we describe applications that illustrate the many open issues revolving around medical data visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the model-view-controller (MVC) framework, although the organization of data (i.e., the model) helps drive how information is presented (i.e., the view), we leave that discussion to Chapter 7.

  2. 2.

    A planar graph is a graph that can be drawn on a (2D) plane such that no edges cross. This problem has been well-studied in computer science and graph theory, with many linear-time algorithms for testing if a given graph is planar.

  3. 3.

    Also referred to in the literature as subtraction images and difference images.

  4. 4.

    Of course, too much layering of information can also be counterproductive and lead to overly complicated displays and/or data being obscured in the view. The KISS principle (keep it simple, stupid) should be followed in any design.

  5. 5.

    The reader is referred to Chapter 3 for a more in-depth discussion of DICOM.

References

  1. Abad-Mota S, Kulikowski C, Gong L, Stevenson S, Mezrich R, Tria A (1995) Iconic reporting: A new way of communicating radiologic findings. Annu Symp Comput Appl Med Care, p 915.

    Google Scholar 

  2. Aberle DR, Dionisio JD, McNitt-Gray MF, Taira RK, Cardenas AF, Goldin JG, Brown K, Figlin RA, Chu WW (1996) Integrated multimedia timeline of medical images and data for thoracic oncology patients. RadioGraphics, 16(3):669-681.

    Google Scholar 

  3. Ahlberg C (1996) Spotfire: An information exploration environment. ACM SIGMOD Record, 25(4):25-29.

    Article  Google Scholar 

  4. Ahlberg C, Williamson C, Shneiderman B (1992) Dynamic queries for information exploration: An implementation and evaluation. Proc ACM SIGCHI Conf Human Factors in Computer Systems, pp 619-626.

    Google Scholar 

  5. Aigner W, Miksch S, Müller W, Schumann H, Tominski C (2007) Visualizing time-oriented data - A systematic view. Computers & Graphics, 31(3):401-409.

    Article  Google Scholar 

  6. Aigner W, Miksch S, Müller W, Schumann H, Tominski C (2008) Visual methods for analyzing time-oriented data. IEEE Trans Vis Comput Graph, 14(1):47-60.

    Article  Google Scholar 

  7. Andrews DF (1972) Plots of high dimensional data. Biometrics, 28(1):125-136.

    Article  Google Scholar 

  8. Anind KD (2001) Understanding and using context. Personal Ubiquitous Comput, 5(1):4-7.

    Article  Google Scholar 

  9. Aris A, Shneiderman B, Plaisant C, Shmueli G, Jank W (2005) Representing unevenly-spaced time series data for visualization and interactive exploration. In: Costabile MF, Paterno F (eds) Proc INTERACT, pp 835-846.

    Google Scholar 

  10. Arnheim R (2004) Visual Thinking. 2 edition. University of California Press, Berkeley.

    Google Scholar 

  11. Augusto JC (2005) Temporal reasoning for decision support in medicine. Artif Intell Med, 33(1):1-24.

    Article  MathSciNet  Google Scholar 

  12. Bade R, Schlechtweg S, Miksch S (2004) Connecting time-oriented data and information to a coherent interactive visualization. Proc SIGCHI Conf Human Factors in Computing Systems, pp 105-112.

    Google Scholar 

  13. Bardram JE (2004) Applications of context-aware computing in hospital work: Examples and design principles. Proc 2004 ACM Symp Applied Computing. ACM Press, Nicosia, Cyprus.

    Google Scholar 

  14. Beaumont IH (1994) User modeling in the interactive anatomy tutoring system ANATOM-TUTOR. User Modeling and User-Adapted Interaction, 4(1):21-45.

    Article  MathSciNet  Google Scholar 

  15. Bederson BB (2001) PhotoMesa: A zoomable image browser using quantum treemaps and bubblemaps. Proc 14th Annual ACM Symp User Interface Software and Technology, pp 71-80.

    Google Scholar 

  16. Benyon D (1993) Adaptive systems: A solution to usability problems. User Modeling and User-Adapted Interaction, 3(1):65-87.

    Article  Google Scholar 

  17. Bodenreider O (2002) Experiences in visualizing and navigating biomedical ontologies and knowledge bases. Proc Intelligent Systems for Molecular Biology (ISMB) SIG Meeting (Bio-ontologies).

    Google Scholar 

  18. Bonetti PO, Waeckerlin A, Schuepfer G, Frutiger A (2000) Improving time-sensitive processes in the intensive care unit: The example of ‘door-to-needle time’ in acute myocardial infarction. Int J Qual Health Care, 12(4):311-317.

    Article  Google Scholar 

  19. Boxwala AA, Peleg M, Tu S, Ogunyemi O, Zeng QT, Wang D, Patel VL, Greenes RA, Shortliffe EH (2004) GLIF3: A representation format for sharable computer-interpretable clinical practice guidelines. J Biomed Inform, 37(3):147-161.

    Article  Google Scholar 

  20. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde: In ihren Prinzipien dargestellt auf Grund des Zellenbaues. JA Barth, Leipzig.

    Google Scholar 

  21. Brusilovsky P (1996) Methods and techniques of adaptive hypermedia. User Modeling and User-Adapted Interaction, 6(2):87-129.

    Article  Google Scholar 

  22. Bui AA, Aberle DR, Kangarloo H (2007) TimeLine: Visualizing integrated patient records. IEEE Trans Inf Technol Biomed, 11(4):462-473.

    Article  Google Scholar 

  23. Bui AA, Aberle DR, McNitt-Gray MF, Cardenas AF, Goldin J (1998) The evolution of an integrated timeline for oncology patient healthcare. Proc AMIA Symp, pp 165-169.

    Google Scholar 

  24. Bui AA, McNitt-Gray MF, Goldin JG, Cardenas AF, Aberle DR (2001) Problem-oriented prefetching for an integrated clinical imaging workstation. J Am Med Inform Assoc, 8(3):242-253.

    Google Scholar 

  25. Bui AA, Taira RK, Churchill B, Kangarloo H (2002) Integrated visualization of problem-centric urologic patient records. Ann N Y Acad Sci, 980:267-277.

    Article  Google Scholar 

  26. Bui AA, Taira RK, El-Saden S, Dordoni A, Aberle DR (2004) Automated medical problem list generation: Towards a patient timeline. Proc MedInfo, vol 107, pp 587-591.

    Google Scholar 

  27. Card SK, Mackinlay JD, Shneiderman B (eds) (1999) Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, Inc. San Francisco, CA.

    Google Scholar 

  28. Catarci T, Costabile MF, Levialdi S, Batini C (1997) Visual query systems for databases: A survey. Journal of Visual Languages and Computing, 8(2):215-260.

    Article  Google Scholar 

  29. Chang NS, Fu KS (1979) Query-by-pictorial-example. Proc IEEE 3rd Intl Computer Software and Applications Conference (COMPSAC 79), pp 325-330.

    Google Scholar 

  30. Chen C (2005) Top 10 unsolved information visualization problems. IEEE Trans Computer Graphics and Applications, 25(4):12-16.

    Article  Google Scholar 

  31. Chiba N, Nishizeki T, Abe S, Ozawa T (1985) A linear algorithm for embedding planar graphs using PQ-trees. J Computer and System Sciences, 30(1):54-76.

    Article  MATH  MathSciNet  Google Scholar 

  32. Chitarro L (2001) Information visualization and its application to medicine. Artif Intell Med, 22:81-88.

    Article  Google Scholar 

  33. Chittaro L, Combi C (2001) Representation of temporal intervals and relations: Information visualization aspects and their evaluation. Proc 8th Intl Symp Temporal Representation and Reasoning (TIME'01). IEEE Computer Society, pp 13-20.

    Google Scholar 

  34. Cho H, Ishida T, Yamashita N, Inaba R, Mori Y, Koda T (2007) Culturally-situated pictogram retrieval. In: Ishida T, Fussell SR, Vossen PTJM (eds) Connecting the Universal to the Specific: Towards the Global Grid (IWIC 2007), pp 211-235.

    Google Scholar 

  35. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006) Toward automatic reconstruction of a highly resolved tree of life. Science, 311(5765):1283-1287.

    Article  Google Scholar 

  36. Clayman CB, Curry RH (1992) The American Medical Association Guide to Your Family's Symptoms. 1st updated pbk. edition. Random House, New York.

    Google Scholar 

  37. Cohen IB (1984) Florence Nightingale. Scientific American (250):128-137.

    Article  Google Scholar 

  38. Collins C (2006) DocuBurst: Document content visualization using language structure. Proc IEEE Symp Information Visualization, Baltimore, MD.

    Google Scholar 

  39. Combi C, Shahar Y (1997) Temporal reasoning and temporal data maintenance in medicine: Issues and challenges. Computers in Biology and Medicine, 27(5):353-368.

    Article  Google Scholar 

  40. Combs TTA, Bederson BB (1999) Does zooming improve image browsing? Proc 4th ACM Conference on Digital Libraries. ACM, Berkeley, California, United States, pp 130-137.

    Google Scholar 

  41. Cooperative Association for Internet Data Analysis (CAIDA) (2008) Walrus visualization tool. http://www.caida.org/tools/visualization/walrus/. Accessed June 6, 2008.

    Google Scholar 

  42. Cousins SB, Kahn MG (1991) The visual display of temporal information. Artif Intell Med, 3:341-357.

    Article  Google Scholar 

  43. Di Battista G, Eades P, Tamassia R, Tollis IG (1998) Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle River, NJ, USA.

    Google Scholar 

  44. Dionisio JDN, Cardenas AF (1996) MQuery: A visual query language for multimedia, timeline and simulation data. J Visual Languages and Computing, 7(4):377-401.

    Article  Google Scholar 

  45. Dix A, Ellis G (1998) Starting simple: Adding value to static visualisation through simple interaction. Proc Working Conf Adv Visual Interfaces, pp 124-134.

    Google Scholar 

  46. Eades P (1984) A heuristic for graph drawing. Congressus Numerantium, 42:149-160.

    MathSciNet  Google Scholar 

  47. Egenhofer MJ (1997) Query processing in spatial-query-by-sketch. J Visual Languages and Computing, 8(4):403-424.

    Article  Google Scholar 

  48. Ehlschlaeger CR, Shortridge AM, Goodchild MF (1997) Visualizing spatial data uncertainty using animation. Computers & Geosciences, 23(4):387-395.

    Article  Google Scholar 

  49. Eick SG (2000) Visualizing multi-dimensional data. ACM SIGGRAPH Computer Graphics, 34(1):61-67.

    Article  MathSciNet  Google Scholar 

  50. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc National Academy of Sciences, 95(25):14863-14868.

    Article  Google Scholar 

  51. Elmqvist N, Tsigas P (2004) Animated visualization of causal relations through growing 2D geometry. Information Visualization, 3(3):154-172.

    Article  Google Scholar 

  52. Ely JW, Osheroff JA, Ebell MH, Bergus GR, Levy BT, Chambliss ML, Evans ER (1999) Analysis of questions asked by family doctors regarding patient care. BMJ, 319(7206):358-361.

    Google Scholar 

  53. Falkman G (2001) Information visualisation in clinical odontology: Multidimensional analysis and interactive data exploration. Artif Intell Med, 22(2):133-158.

    Article  Google Scholar 

  54. Feldman-Stewart D, Kocovski N, McConnell BA, Brundage MD, Mackillop WJ (2000) Perception of quantitative information for treatment decisions. Med Decis Making, 20(2):228-238.

    Article  Google Scholar 

  55. Feng Q (1997) Algorithms for drawing clustered graphs. Department of Computer Science and Software Engineering, PhD Dissertation. University of Newcastle.

    Google Scholar 

  56. Ferrant M, Nabavi A, Macq B, Jolesz FA, Kikinis R, Warfield SK (2001) Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Trans Med Imaging, 20(12):1384-1397.

    Article  Google Scholar 

  57. Ferreira de Oliveira MC, Levkowitz H (2003) From visual data exploration to visual data mining: A survey. IEEE Trans Vis Comput Graph, 9(3):378-394.

    Article  Google Scholar 

  58. Finger R, Bisantz AM (2002) Utilizing graphical formats to convey uncertainty in a decision-making task. Theoretical Issues in Ergonomics Science, 3(1):1-25.

    Article  Google Scholar 

  59. Fischer G (2001) User modeling in human-computer interaction. User Modeling and User-Adapted Interaction, 11(1):65-86.

    Article  MATH  Google Scholar 

  60. Fox J, Alabassi A, Patkar V, Rose T, Black E (2006) An ontological approach to modeling tasks and goals. Computers in Biology and Medicine, 36(7-8):837-856.

    Article  Google Scholar 

  61. Frias-Martinez E, Magoulas G, Chen S, Macredie R (2006) Automated user modeling for personalized digital libraries. Intl J Information Management, 26(3):234-248.

    Article  Google Scholar 

  62. George GR, Jock DM, Stuart KC (1991) Cone trees: Animated 3D visualizations of hierarchical information. Proc SIGCHI Conf Human Factors in Computing Systems. ACM, New Orleans, Louisiana, United States.

    Google Scholar 

  63. Görg C, Pohl M, Qeli E, Xu K (2007) Visual representations. In: Kerren A, et al. (eds) Human-centered Visualization Environments, vol 4417. Springer Berlin/Heidelberg, pp 163-200.

    Chapter  Google Scholar 

  64. Green BB, Cook AJ, Ralston JD, Fishman PA, Catz SL, Carlson J, Carrell D, Tyll L, Larson EB, Thompson RS (2008) Effectiveness of home blood pressure monitoring, Web communication, and pharmacist care on hypertension control: A randomized controlled trial. JAMA, 299(24):2857-2867.

    Article  Google Scholar 

  65. Haimowitz IJ, Kohane IS (1996) Managing temporal worlds for medical trend diagnosis. Artif Intell Med, 8(3):299-321.

    Article  Google Scholar 

  66. Halamka JD, Mandl KD, Tang PC (2008) Early experiences with personal health records. J Am Med Inform Assoc, 15(1):1-7.

    Article  Google Scholar 

  67. Hall KM (1970) An r-dimensional quadratic placement algorithm. Management Science, 17:219-229.

    Article  MATH  Google Scholar 

  68. Hansen MD (2005) An Analysis of the Diagrammatic Visual Data Querying Domain. Computer Science Department, PhD Dissertation. University of California, Santa Cruz.

    Google Scholar 

  69. Hansen MD (2005) A survey of systems in the diagrammatic visual data querying domain. University of California, Santa Cruz.

    Google Scholar 

  70. Harris RL (1999) Information Graphics: A Comprehensive Illustrated Reference. Oxford University Press, New York.

    Google Scholar 

  71. Hearst M (1995) TileBars: Visualization of term distribution information in full text information access. Proc SIGCHI Conf Human Factors in Computing Systems. ACM Press/Addison-Wesley Publishing Co., Denver, CO, United States.

    Google Scholar 

  72. Heer J, Card SK, Landay JA (2005) prefuse: A toolkit for interactive information visualization. Proc SIGCHI Conf Human Factors in Computing Systems, pp 421-430.

    Google Scholar 

  73. Herman I, Melançon G, Marshall MS (2000) Graph visualization and navigation in information visualization: A survey. IEEE Trans Vis Comput Graph, 6(1):24-43.

    Article  Google Scholar 

  74. Hoeke JO, Bonke B, van Strik R, Gelsema ES (2000) Evaluation of techniques for the presentation of laboratory data: Support of pattern recognition. Methods Inf Med, 39(1):88-92.

    Google Scholar 

  75. Hoeke JO, Gelsema ES, Wulkan RW, Leijnse B (1991) Graphical non-linear representation of multi-dimensional laboratory measurements in their clinical context. Methods Inf Med, 30(2):138-144.

    Google Scholar 

  76. Hoey LM, Ieropoli SC, White VM, Jefford M (2008) Systematic review of peer-support programs for people with cancer. Patient Educ Couns, 70(3):315-337.

    Article  Google Scholar 

  77. Horvitz E, Breese J, Heckerman D, Hovel D, Rommelse K (1998) The Lumiere Project: Bayesian user modeling for inferring the goals and needs of software users. Proc 14th Conf Uncertainty in Artificial Intelligence, pp 256-265.

    Google Scholar 

  78. Hughes T, Hyun Y, Liberles D (2004) Visualising very large phylogenetic trees in three dimensional hyperbolic space. BMC Bioinformatics, 5:48.

    Article  Google Scholar 

  79. Huynh DF, Drucker SM, Baudisch P, Wong C (2005) Time Quilt: Scaling up zoomable photo browsers for large, unstructured photo collections. Proc ACM SIGCHI Conf Human Factors in Computing Systems:1937-1940.

    Google Scholar 

  80. IBM Zurich Research Laboratory (2007) IBM Research unveils 3-D avatar to help doctors visualize patient records and improve care. http://www.zurich.ibm.com/news/07/asme.html. Accessed August 1, 2008.

    Google Scholar 

  81. Inselberg A, Dimsdale B (1990) Parallel coordinates: A tool for visualizing multi-dimensional geometry. Proc 1st IEEE Conf Visualization, pp 361-378.

    Google Scholar 

  82. Jahnke J, Bychkov Y, Dahlem D, Kawasme L (2004) Context-aware information services for health care. In: Roth-Berghofer T, Schulz S (eds) Proc 1st Intl Workshop on Modeling and Retrieval of Context (MRC).

    Google Scholar 

  83. Jing Y, Jianping F, Daniel H, Yuli G, Hangzai L, William R, Matthew W (2006) Semantic Image Browser: Bridging information visualization with automated intelligent image analysis. IEEE Symp Visual Analytics Science And Technology, pp 191-198.

    Google Scholar 

  84. Johnson CR, Sanderson AR (2003) A next step: Visualizing errors and uncertainty. IEEE Trans Computer Graphics and Applications, 23(5):6-10.

    Article  Google Scholar 

  85. Johnson DB, Taira RK, Zhou W, Goldin JG, Aberle DR (1998) Hyperad: Augmenting and visualizing free text radiology reports. Radiographics, 18(2):507-515.

    Google Scholar 

  86. Joseph T, Cardenas AF (1988) PICQUERY: A high level query language for pictorial database management. IEEE Trans Software Engineering, 14(5):630-638.

    Article  Google Scholar 

  87. Kadaba NR, Irani PP, Leboe J (2007) Visualizing causal semantics using animations. IEEE Trans Vis Comput Graph, 13(6):1254-1261.

    Article  Google Scholar 

  88. Kamel Boulos MN, Roudsari AV, Carso NE (2002) HealthCyberMap: A semantic visual browser of medical Internet resources based on clinical codes and the human body metaphor. Health Info Libr J, 19(4):189-200.

    Article  Google Scholar 

  89. Keim DA, Kriegel HP (1996) Visualization techniques for mining large databases: A comparison. IEEE Trans Knowledge and Data Engineering, 8(6):923-938.

    Article  Google Scholar 

  90. Kiraly AP, Helferty JP, Hoffman EA, McLennan G, Higgins WE (2004) Three-dimensional path planning for virtual bronchoscopy. IEEE Trans Med Imaging, 23(11):1365-1379.

    Article  Google Scholar 

  91. Klimov D, Shahar Y (2005) A framework for intelligent visualization of multiple time-oriented medical records. Proc AMIA Symp, p 405.

    Google Scholar 

  92. Knapp P, Raynor DK, Jebar AH, Price SJ (2005) Interpretation of medication pictograms by adults in the UK. Ann Pharmacotherapy, 39(7):1227-1233.

    Article  Google Scholar 

  93. Kobsa A (2001) Generic user modeling systems. User Modeling and User-Adapted Interaction, 11(1-2):49-63.

    Article  MATH  Google Scholar 

  94. Kohlmann P, Bruckner S, Kanitsar A, Gröoller ME (2007) LiveSync: Deformed viewing spheres for knowledge-based navigation. IEEE Trans Visualization and Computer Graphics, 13(6):1544-1551.

    Article  Google Scholar 

  95. Krupinski EA, Kundel HL, Judy PF, Nodine CF (1998) The Medical Image Perception Society: Key issues for image perception research. Radiology, 209(3):611-612.

    Google Scholar 

  96. Kumar A, Ciccarese P, Smith B, Piazza M (2004) Context-based task ontologies for clinical guidelines. In: Pisanelli DM (ed) Ontologies in Medicine. IOS Press, pp 81-94.

    Google Scholar 

  97. Kumar A, Smith B, Pisanelli DM, Gangemi A, Stefanelli M (2004) An ontological framework for the implementation of clinical guidelines in health care organizations. In: Pisanelli DM (ed) Ontologies in Medicine. IOS Press, pp 95-107.

    Google Scholar 

  98. Kundel HL (2000) Visual search in medical images. In: Beutel J, Horii SC, Kim Y (eds) Handbook of Medical Imaging, vol 1. SPIE Press, pp 837–858.

    Chapter  Google Scholar 

  99. Lancaster JL, Summerlin JL, Rainey L, Freitas CS, Fox PT (1997) The Talairach Daemon, a database server for Talairach atlas labels. Neuroimage, 5(4):S633.

    Google Scholar 

  100. Langley P (1999) User modeling in adaptive interfaces. Proc 7th Intl Conf User Modeling, pp 357-370.

    Google Scholar 

  101. Lehmann TM, Guld MO, Thies C, Fischer B, Spitzer K, Keysers D, Ney H, Kohnen M, Schubert H, Wein BB (2004) Content-based image retrieval in medical applications. Methods Inf Med, 43(4):354-361.

    Google Scholar 

  102. Lewis C, Rieman J (1993) Task-Centered User Interface Design: A Practical Introduction. University of Colorado, Boulder.

    Google Scholar 

  103. Limbourg Q, Vanderdonckt J (2003) Comparing task models for user interface design. In: Diaper D, Stanton N (eds) The Handbook of Task Analysis for Human-Computer Interaction, pp 135-154.

    Google Scholar 

  104. Lin X (1992) Visualization for the document space. Proc IEEE Conf Visualization '92, pp 274-281.

    Google Scholar 

  105. Liu J, Kuenong C, Hui KK (2003) An adaptive user interface based on personalized learning. IEEE Intelligent Systems, 18(2):52-57.

    Article  Google Scholar 

  106. Lodha SK, Pang A, Sheehan RE, Wittenbrink CM, Yagel R, Nielson GM (1996) UFLOW: Visualizing uncertainty in fluid flow. Proc IEEE Conf Visualization, pp 249-254.

    Google Scholar 

  107. Luis F-R, Frank M. Shipman, III (2000) Adaptive medical information delivery combining user, task and situation models. Proc 5th Intl Conf Intelligent User Interfaces. ACM, New Orleans, Louisiana, United States, pp 94-97.

    Google Scholar 

  108. Lundstrom C, Ljung P, Persson A, Ynnerman A (2007) Uncertainty visualization in medical volume rendering using probabilistic animation. IEEE Trans Vis Comput Graph, 13(6):1648-1655.

    Article  Google Scholar 

  109. Lungu M, Xu K (2007) Biomedical information visualization. In: Kerren A, et al. (eds) Human-centered Visualization Environments, vol 4417. Springer Berlin/Heidelberg, pp 311-342.

    Chapter  Google Scholar 

  110. Mackinlay J (1986) Automating the design of graphical presentations of relational information. ACM Trans Graph, 5(2):110-141.

    Article  Google Scholar 

  111. Martins SB, Shahar Y, Goren-Bar D, Galperin M, Kaizer H, Basso LV, McNaughton D, Goldstein MK (2008) Evaluation of an architecture for intelligent query and exploration of time-oriented clinical data. Artif Intell Med, 43(1):17-34.

    Article  Google Scholar 

  112. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B, Holmes C, Collins L, Thompson P, MacDonald D, Iacoboni M, Schormann T, Amunts K, Palomero-Gallagher N, Geyer S, Parsons L, Narr K, Kabani N, Le Goualher G, Feidler J, Smith K, Boomsma D, Pol HH, Cannon T, Kawashima R, Mazoyer B (2001) A four-dimensional probabilistic atlas of the human brain. J Am Med Inform Assoc, 8(5):401-430.

    Google Scholar 

  113. Medical Imaging Perception Society (2008) MIPS main web page. http://www.mips.ws/. Accessed June 26, 2008.

    Google Scholar 

  114. Merrick JRW, Dinesh V, Amita S, van Dorp JR, Mazzuchi TA (2003) Propagation of uncertainty in a simulation-based maritime risk assessment model utilizing Bayesian simulation techniques. Proc 2003 Winter Simulation Conf, vol 1, pp 449-455.

    Google Scholar 

  115. Michotte A (1963) The Perception of Causality. Methuen, London.

    Google Scholar 

  116. Microsoft Health (2008) Common User Interface. http://www.mscui.net/roadmap/road-map.aspx. Accessed May 13, 2008,.

  117. Miksch S, Horn W, Popow C, Paky F (1996) Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants. Artif Intell Med, 8(6):543-576.

    Article  Google Scholar 

  118. Ming Z, Hong Z, Donny T, Stephen TCW (2003) DBMap: A TreeMap-based framework for data navigation and visualization of brain research registry. In: Huang HK, Ratib OM (eds), vol 5033. SPIE, pp 403-412.

    Google Scholar 

  119. Morioka CA, El-Saden S, Duckwiler G, Zou Q, Ying R, Bui A, Johnson D, Kangarloo H (2003) Workflow management of HIS/RIS textual documents with PACS image studies for neuroradiology. AMIA Annu Symp Proc, pp 475-479.

    Google Scholar 

  120. Morioka CA, El-Saden S, Pope W, Sayre J, Duckwiler G, Meng F, Bui A, Kangarloo H (2008) A methodology to integrate clinical data for the efficient assessment of brain-tumor patients. Inform Health Soc Care, 33(1):55-68.

    Article  Google Scholar 

  121. Morioka CA, Valentino DJ, Duckwiler G, El-Saden S, Sinha U, Bui A, Kangarloo H (2001) Disease specific intelligent pre-fetch and hanging protocol for diagnostic neuroradiology workstations. Proc AMIA Symp, pp 468-472.

    Google Scholar 

  122. Munzner T (1998) Exploring large graphs in 3D hyperbolic space. IEEE Trans Computer Graphics and Applications, 18(4):18-23.

    Article  Google Scholar 

  123. National Cancer Institute Center for Bioinformatics (2008) NCI Terminology Browser. http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do. Accessed June 6, 2008.

    Google Scholar 

  124. National Institutes of Health (2008) The National Library of Medicine's Visible Human Project. http://www.nlm.nih.gov/research/visible/visible_human.html. Accessed June 18, 2008.

    Google Scholar 

  125. Noah S, Rahul G, Steven MS, Richard S (2008) Finding paths through the world's photos. Proc ACM SIGGRAPH Intl Conf Computer Graphics and Interactive Techniques ACM, Los Angeles, California.

    Google Scholar 

  126. North C, Korn F (1996) Browsing anatomical image databases: A case study of the Visible Human. Proc SIGCHI Conf Human Factors in Computing Systems.

    Google Scholar 

  127. Ogden WC, Brooks SR (1983) Query languages for the casual user: Exploring the middle ground between formal and natural languages. Proc SIGCHI Conf Human Factors in Computing Systems. ACM, Boston, Massachusetts, United States.

    Google Scholar 

  128. Ogunyemi OI, Clarke JR, Ash N, Webber BL (2002) Combining geometric and probabilistic reasoning for computer-based penetrating-trauma assessment. J Am Med Inform Assoc, 9(3):273-282.

    Article  Google Scholar 

  129. Payne PR, Starren JB (2005) Quantifying visual similarity in clinical iconic graphics. J Am Med Inform Assoc, 12(3):338-345.

    Article  Google Scholar 

  130. Peleg M, Tu S, Bury J, Ciccarese P, Fox J, Greenes RA, Hall R, Johnson PD, Jones N, Kumar A, Miksch S, Quaglini S, Seyfang A, Shortliffe EH, Stefanelli M (2003) Comparing computer-interpretable guideline models: A case-study approach. J Am Med Inform Assoc, 10(1):52-68.

    Article  Google Scholar 

  131. Pickett RM, Grinstein GG (1988) Iconographic displays for visualizing multidimensional data. Proc IEEE Intl Conf Systems, Man, and Cybernetics.

    Google Scholar 

  132. Pickhardt PJ, Choi JR, Hwang I, Butler JA, Puckett ML, Hildebrandt HA, Wong RK, Nugent PA, Mysliwiec PA, Schindler WR (2003) Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N Engl J Med, 349(23):2191-2200.

    Article  Google Scholar 

  133. Plaisant C, Carr D, Shneiderman B (1995) Image-browser taxonomy and guidelines for designers. IEEE Software, 12(2):21-32.

    Article  Google Scholar 

  134. Plaisant C, Mushlin R, Snyder A, Li J, Heller D, Shneiderman B (1998) LifeLines: Using visualization to enhance navigation and analysis of patient records. Proc AMIA Symp, pp 76-80.

    Google Scholar 

  135. Platt JC, Czerwinski M, Field BA (2003) PhotoTOC: Automatic clustering for browsing personal photographs. Proc 2003 Joint Conf 4th Intl Conf on Information, Communications and Signal Processing and the 4th Pacific Rim Conf on Multimedia, vol 1, pp 6-10.

    Google Scholar 

  136. Portoni L, Combi C, Pinciroli F (2002) User-oriented views in health care information systems. IEEE Trans Biomed Eng, 49(12):1387-1398.

    Article  Google Scholar 

  137. Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H (2003) The state of the art in flow visualisation: Feature extraction and tracking. Comp Graphics Forum, 22(4):775-792.

    Article  Google Scholar 

  138. Powsner SM, Tufte ER (1994) Graphical summary of patient status. Lancet, 344(8919):386-389.

    Article  Google Scholar 

  139. Preim B, Oeltze S, Mlejnek M, Groller E, Hennemuth A, Behrens S (2009) Survey of the visual exploration and analysis of perfusion data. IEEE Trans Vis Comput Graph, 12(2):1-17.

    Google Scholar 

  140. Ralston JD, Revere D, Robins LS, Goldberg HI (2004) Patients' experience with a diabetes support programme based on an interactive electronic medical record: Qualitative study. BMJ, 328(7449):1159-1163.

    Article  Google Scholar 

  141. Ramer L, Richardson JL, Cohen MZ, Bedney C, Danley KL, Judge EA (1999) Multi¬measure pain assessment in an ethnically diverse group of patients with cancer. J Transcult Nurs, 10(2):94-101.

    Article  Google Scholar 

  142. Rheingans P, Joshi S (1999) Visualization of molecules with positional uncertainty. Data Visualization, 99:299-306.

    Google Scholar 

  143. Rich E (1979) User modeling via stereotypes. Cognitive Science, 3(4):329-354.

    Article  Google Scholar 

  144. Rich E (1983) Users are individuals: Individualizing user models. Intl J Man-Machine Studies, 18(3):199-214.

    Article  Google Scholar 

  145. Rodden K, Wood KR (2003) How do people manage their digital photographs? Proc ACM SIGCHI Conf Human Factors in Computing Systems, pp 409-416.

    Google Scholar 

  146. Rosset A, Spadola L, Ratib O (2004) OsiriX: An open-source software for navigating in multidimensional DICOM images. J Digital Imaging, 17(3):205-216.

    Article  Google Scholar 

  147. Sasso G, Marsiglia HR, Pigatto F, Basilicata A, Gargiulo M, Abate AF, Nappi M, Pulley J, Sasso FS (2005) A visual query-by-example image database for chest CT images: Potential role as a decision and educational support tool for radiologists. J Digital Imaging, 18(1):78-84.

    Article  Google Scholar 

  148. Satava RM, Jones SB (1998) Current and future applications of virtual reality for medicine. Proc IEEE, 86(3):484-489.

    Article  Google Scholar 

  149. Scotch M, Parmanto B (2006) Development of SOVAT: A numerical-spatial decision support system for community health assessment research. Int J Med Inform, 75(10-11):771-784.

    Article  Google Scholar 

  150. Selker T, Burleson W (2000) Context-aware design and interaction in computer systems. IBM Systems Journal, 39(3&4):880-891.

    Article  Google Scholar 

  151. Shahar Y, Goren-Bar D, Boaz D, Tahan G (2006) Distributed, intelligent, interactive visualization and exploration of time-oriented clinical data and their abstractions. Artif Intell Med, 38(2):115-135.

    Article  Google Scholar 

  152. Sheth N, Cai Q (2003) Visualizing MeSH dataset using radial tree layout. Indiana University. http://iv.slis.indiana.edu/sw/papers/radialtree.pdf. Accessed June 2, 2008.

    Google Scholar 

  153. Shneiderman B (1983) Direct manipulation: A step beyond programming languages. Computer, 16(8):57-69.

    Article  Google Scholar 

  154. Shneiderman B (1992) Tree visualization with tree-maps: 2D space-filling approach. ACM Trans Graphics, 11(1):92-99.

    Article  MATH  Google Scholar 

  155. Shneiderman B (1996) The eyes have it: A task by data type taxonomy for information visualizations. Proc IEEE Symp Visual Languages, pp 336-343.

    Google Scholar 

  156. Shneiderman B, Plaisant C (2004) Designing the User Interface: Strategies for Effective Human-Computer Interaction. 4th edition. Pearson/Addison Wesley, Boston.

    Google Scholar 

  157. Shyu CR, Pavlopoulou C, Kak AC, Brodley CE, Broderick LS (2002) Using human perceptual categories for content-based retrieval from a medical image database. Computer Vision and Image Understanding, 88(3):119-151.

    Article  MATH  Google Scholar 

  158. Simkin D, Hastie R (1987) An information-processing analysis of graph perception. J Am Statistical Association, 82(398):454-465.

    Article  Google Scholar 

  159. Snavely N, Seitz SM, Szeliski R (2006) Photo tourism: Exploring photo collections in 3D. ACM Trans Graphics, 25(3):835-846.

    Article  Google Scholar 

  160. Starren J, Johnson SB (2000) An object-oriented taxonomy of medical data presentations. J Am Med Inform Assoc, 7(1):1-20.

    Google Scholar 

  161. Sugiyama K, Tagawa S, Toda M (1981) Methods for visual understanding of hierarchical Systems. IEEE Trans Syst Man Cybern, SMC-11(2):109-125.

    Article  MathSciNet  Google Scholar 

  162. Sutton DR, Fox J (2003) The syntax and semantics of the PROforma guideline modeling language. J Am Med Inform Assoc, 10(5):433-443.

    Article  Google Scholar 

  163. Svakhine NA, Ebert DS, Andrews W (2009) Illustration-inspired, depth enhanced volumetric medical visualization. IEEE Trans Vis Comput Graph, 12(2):1-10.

    Google Scholar 

  164. Talairach J, Tournoux P (1988) Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging. Thieme.

    Google Scholar 

  165. Tange HJ, Schouten HC, Kester ADM, Hasman A (1998) The granularity of medical narratives and its effect on the speed and completeness of information retrieval. J Am Med Inform Assoc, 5(6):571-582.

    Google Scholar 

  166. Tominski C, Abello J, Schumann H (2004) Axes-based visualizations with radial layouts. Proc ACM Symp Applied Computing, pp 1242-1247.

    Google Scholar 

  167. Tory M, Potts S, Moller T (2005) A parallel coordinates style interface for exploratory volume visualization. IEEE Trans Vis Comput Graph, 11(1):71-80.

    Article  Google Scholar 

  168. Tory M, Röber N, Möller T, Celler A, Atkins MS (2001) 4D space-time techniques: A medical imaging case study. Proc Conf Visualization '01, pp 473-476.

    Google Scholar 

  169. Tufte ER (1990) Envisioning Information. Graphics Press, Cheshire, Conn. (P.O. Box 430, Cheshire 06410).

    Google Scholar 

  170. Tufte ER (1997) Visual Explanations: Images and Quantities, Evidence and Narrative. Graphics Press, Cheshire, Conn.

    Google Scholar 

  171. Tufte ER (2001) The Visual Display of Quantitative Information. 2nd edition. Graphics Press, Cheshire, Conn.

    Google Scholar 

  172. Tweedie L (1997) Characterizing interactive externalizations. Proc SIGCHI Conf Human Factors in Computing Systems, pp 375-382.

    Google Scholar 

  173. United States Centers for Disease Control (CDC) and Prevention (2008) Influenza (Flu) Activity. http://www.cdc.gov/flu/weekly/fluactivity.htm. Accessed June 1, 2008, 2008.

    Google Scholar 

  174. Viégas FB, Wattenberg M, Dave K (2004) Studying cooperation and conflict between authors with history flow visualizations. Proc SIGCHI Conf Human Factors in Computing Systems, pp 575-582.

    Google Scholar 

  175. Villablanca JP, Martin N, Jahan R, Gobin YP, Frazee J, Duckwiler G, Bentson J, Hardart M, Coiteiro D, Sayre J (2000) Volume-rendered helical computerized tomography angiography in the detection and characterization of intracranial aneurysms. J Neurosurg, 93(2):254-264.

    Article  Google Scholar 

  176. Wang JZ, Nguyen J, Lo KK, Law C, Regula D (1999) Multiresolution browsing of pathology images using wavelets. Proc AMIA Symp, pp 340-344.

    Google Scholar 

  177. Wang TD, Plaisant C, Quinn A, Stanchak R, Murphy S, Shneiderman B (2008) Aligning temporal data by sentinel events: Discovering patterns in electronic health records. Proc SIGCHI Conf Human Factors in Computing Systems. ACM, Florence, Italy.

    Google Scholar 

  178. Ware C, Neufeld E, Bartram L (1999) Visualizing causal relations. Proc IEEE Information Visualization, Late Breaking Hot Topics, pp 39-42.

    Google Scholar 

  179. Weber M, Alexa M, Muller W (2001) Visualizing time-series on spirals. IEEE Symp Information Visualization, INFOVIS):7-13.

    Google Scholar 

  180. Winkelman WJ, Leonard KJ, Rossos PG (2005) Patient-perceived usefulness of online electronic medical records: Employing grounded theory in the development of information and communication technologies for use by patients living with chronic illness. J Am Med Inform Assoc, 12(3):306-314.

    Article  Google Scholar 

  181. Woodring J, Shen HW (2009) Multiscale time activity data exploration via temporal clustering visualization spreadsheet. IEEE Trans Vis Comput Graph, 15(1):1-15.

    Article  Google Scholar 

  182. Zeng Q, Kogan S, Ash N, Greenes RA (2001) Patient and clinician vocabulary: How different are they? Proc MedInfo, vol 10, pp 399-403.

    Google Scholar 

  183. Zeng QT, Tse T (2006) Exploring and developing consumer health vocabularies. J Am Med Inform Assoc, 13(1):24-29.

    Article  Google Scholar 

  184. Zhu X, Lee KN, Levin DL, Wong ST, Huang HK, Soo Hoo K, Gamsu G, Webb WR (1996) Temporal image database design for outcome analysis of lung nodule. Comput Med Imaging Graph, 20(4):347-356.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex A. T. Bui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bui, A.A.T., Hsu, W. (2010). Medical Data Visualization: Toward Integrated Clinical Workstations. In: Bui, A., Taira, R. (eds) Medical Imaging Informatics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-0385-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-0385-3_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-0384-6

  • Online ISBN: 978-1-4419-0385-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics