Skip to main content

Ultrafiltration to Supply Drinking Water in International Development: A Review of Opportunities

  • Chapter
Appropriate Technologies for Environmental Protection in the Developing World

Abstract

One of humanities biggest problems at present are millions of preventable deaths in developing countries. Most of those deaths are caused by microorganisms, often from sewage contaminated drinking water. Hence, technology to remove such contaminants is a first step to solving the problem. One such technology is ultrafiltration (UF). UF is a membrane filtration process in which water is pushed through a physical filter with a transmembrane pressure supplied by a pump or gravity. The pore size of such membranes is such that bacteria and most viruses can be effectively retained. As a consequence, this process has the ability to disinfect water physically and hence prevent water related disease and death from microorganisms. In this paper the performance of existing UF membranes and systems will be reviewed in terms of pathogen removal, water productivity (system capacity and flux), specific energy consumption per volume of water produced, which affect cost. Specific needs of systems to be installed and operated in developing countries as well as opportunities for the global community will be outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adham, S., Chiu, K.-P., Gramith, K., and Oppenheimer, J. (2005). Development of a Microfiltration and Ultrafiltation Knowledge Base. Awwa Research Foundation, U.S. Department of the Interior, Bureau of Reclamation, Pasadena.

    Google Scholar 

  • Andrews, C. and Pereira, H. G. (1964). Viruses of Vertebrates. Williams and Wilkins, London.

    Google Scholar 

  • Ashbolt, N. J., Grabow, W. O. K., and Snozzi, M. (2001). Indicators of microbial water quality. In: Water Quality: Guidelines, Standards and Health (L. Fewtrell and J. Bartram, eds.), IWA Publishing, London.

    Google Scholar 

  • Bastable, A. (2007). Personal Communication (A. I. Schäfer, ed.).

    Google Scholar 

  • Deakin, C. (2007). Personal Communication (A. I. Schäfer, ed.), Edinburgh.

    Google Scholar 

  • DiGiano, F. A., Andreottola, G., Adham, S., Buckley, C., Cornel, P., Daigger, G. T., Fane, A. G., Galil, N., Jacangelo, J., Pollice, A., Rittmann, B. E., Rozzi, A., Stephenson, T., and Ujang, Z. (2004). Safe water for everyone: Membrane bioreactor technology. Science in Africa June. http://www.scienceinafrica.co.za/2004/june/membrane.htm

  • Drouiche, M., Lounici, H., Belhocine, D., Grib, H., Piron, D., and Mameri, N. (2001). Economic study of the treatment of surface water by small ultrafiltration units. South African Water Research Commission 27, 199–204.

    Google Scholar 

  • Gleick, P. H. (2002). Dirty water: estimated deaths from water related diseases 2000–2020. Pacific Institute for Studies in Development, Environment, and Security.

    Google Scholar 

  • Grabow, W. O. K., Botma, K. L., de Villiers, J. C., Clay, C. G., and Erasmus, B. (1999). Assessment of cell culture and polymerase chain reaction procedures for the detection of polioviruses in wastewater. Bulletin of the World Health Organization 77, 973–980.

    CAS  Google Scholar 

  • Herath, G., Yamamoto, K., and Urase, T. (1998). Mechanism of bacterial and viral transport through microfiltration membranes. Water Science and Technology 38, 489–496.

    Article  CAS  Google Scholar 

  • Hydranautics. HYDRAcap®. From Website: http://www.hydranautics.com/index.php>? pagename=hydracap

  • Inge. Dizzer 220/450. From Website: http://www.inge.ag/en/produkte/dizzer_220_450.html

  • Jacangelo, J. G. (1995). Removal of cryptosporidium parvum, giardia muris and MS2 bacteriophage by hollow fibre microfiltration and ultrafiltration. In: Drinking Water from Sewage Using Membranes Symposium UNSW, Sydney, Australia.

    Google Scholar 

  • Jacangelo, J. G., Laine, J.-M., Carns, K. E., Cummings, E. W., and Mallevialle, J. (1991). Low-pressure membrane filtration for removing giardia and microbial indicators. Journal of American Water Works Association 38, 97–106.

    Google Scholar 

  • Joyce, A., Loureiro, D., Rodrigues, C., and Castro, S. (2001). Small reverse osmosis units using PV systems for water purification in rural places. Desalination 137, 39–44.

    Article  CAS  Google Scholar 

  • Koch Membrane Systems (1) (2004). Ultrafiltration — filtration overview. From Website: http://www.kochmembrane.com/sep_uf.html, Vol. 2006.

  • Koch Membrane Systems (2) (2005). Packaged water treatment ultrafiltration system. From Website: http://www.kochmembrane.com/pdf/Brochures/FINAL_PWBRO_FIN31.pdf.

  • Laîné, J.-M., Vial, D., and Moulart, P. (2000). Status after 10 years of operation — overview of UF technology today. Desalination 131, 17–25.

    Article  Google Scholar 

  • Madaeni, S. S., Fane, A. G., and Grohmann, G. S. (1995). Virus removal from water and waste-water using membranes. Journal of Membrane Science 102, 65–75.

    Article  CAS  Google Scholar 

  • Montgomery, M. A. and Elimelech, M. (2007). Water and sanitation in developing countries: Including health in the equation. Environmental Science and Technology 41, 17–24.

    Article  Google Scholar 

  • Moore, A. (2006). Personal Communication (J. Davey).

    Google Scholar 

  • Mulder, M. (1996). Basic Principles Of Membrane Technology. Kluwer, Dordrecht.

    Google Scholar 

  • Nitto Denko. Membrane products. From Website: http://www.nitto.com/product/datasheet/menbren/, Vol. 2007.

  • Norit (1). X-flow introduces the Perfector-E. From Website: http://www.norit.nl/?RubriekID=2216. 15th April 2007.

  • Norit (2). CAPFIL — capillary membrane products. From Website: http://www.norit.com/p3. php?RubriekID=2160.

  • Norit (3). Potable water. From Website: http://www.norit.com/import/assetmanager/5/8815/NORI260069%20Potable%20Water.pdf.

  • Norit (4). POE systems — Filtrix® LineGuard. From Website: http://www.norit.com/p3. php?RubriekID=2923.

  • Otaki, M., Yano, K., and Ohgaki, S. (1998). Virus removal in a membrane separation process. Water Science and Technology 37, 107–116.

    Article  CAS  Google Scholar 

  • Pall Corporation (1). Power generation products. From Website: http://www.pall.com/power_product_list.asp. 15th April 2007.

  • Pall Corporation (2). Microza UF modules, OLT series. From Website: http://www.pall.com/datasheet_MicroE_2801.asp?sectionid=specifications.

  • Pall Corporation (3). Septra™ CB filtration systems. From Website: http://www.pall.com/datasheet_FoodandBev_41058.asp?sectionid=description.

  • Pall Corporation (4). Microza membranes. From Website: http://www.pallcorp.com/pdf/198_Microza.pdf.

  • Richards, B. S. and Schäfer, A. I. (2002). Design considerations for a solar-powered desalination system for remote communities in Australia. Desalination 144, 193–199.

    Article  CAS  Google Scholar 

  • Richards, B. S. and Schäfer, A. I. (2003). Photovoltaic-powered desalination systems for remote Australian communities. Renewable Energy 28, 2013–2022.

    Article  CAS  Google Scholar 

  • Schäfer, A. I. and Richards, B. S. (2005). Testing of a hybrid membrane system for groundwater desalination in an Australian national park. Desalination 183, 55–62.

    Article  Google Scholar 

  • Schäfer, A. I., Fane, A. G., and Waite, T. D. (2001). Cost factors and chemical pretreatment effects in the membrane filtration of waters containing natural organic matter. Water Research 35, 1509–1517.

    Article  Google Scholar 

  • Schäfer, A. I., Broeckmann, A., and Richards, B. S. (2005). Membranes and renewable energy — a new era of sustainable development for developing countries. Membrane Technology 2005(11), 6–10.

    Article  Google Scholar 

  • Schäfer, A. I., Broeckmann, A., and Richards, B. S. (2007). Renewable energy powered membrane technology. 1. Development and characterization of a photovoltaic hybrid membrane system. Environmental Science and Technology 41, 998–1003.

    Article  Google Scholar 

  • Schwarzenbach, R. P., Escher, B. I., Fenner, K., Hofstetter, T. B., Johnson, C. A., von Gunten, U., and Wehrli, B. (2006). The challenge of micropollutants in aquatic systems. Science 313, 1072–1077.

    Article  Google Scholar 

  • Separation Dynamics. Extran ultrafiltration system (EUS), Model “E”. From Website: http://www.separationdynamics.com/html/esystem.pdf.

  • Siemens Water Technologies Corp (2007). Water technologies: Advanced membrane filtration. From Website: http://www.usfilter.com/NR/rdonlyres/A83CE626788E-4521-A7A209D8FE8475D3/0/IWSAMFBR110412.pdf.

  • Solco (2004). Skyhydrant. From Website: http://www.solco.com.au/products/solco_water_solutions/skyhydrant.

  • Strang, V. (2004). The meaning of water. Berg.

    Google Scholar 

  • Ueda, T. (2001). Removal of microorganisms from wastewater with a membrane bioreactor. Bulletin of the National Institute of Agricultural Sciences (Japan) 40, 1–94.

    Google Scholar 

  • UN (2005). United Nations millennium goals. From Website: http://www.un.org/millenniumgoals/.

  • UN (2006). Water, a shared responsibility. United Nations World Water Development Report 2.

    Google Scholar 

  • Urase, T., Yamamoto, K., and Ohgaki, S. (1993). Evaluation of virus removal in membrane separation processes using coliphage Q beta. Water Science and Technology 28, 9–15.

    CAS  Google Scholar 

  • Vedavyasan, C. V. (2007). Pretreatment trends — an overview. Desalination 203, 296–299.

    Article  CAS  Google Scholar 

  • von Gottberg, A. J. M. and Persechino, J. M. (2000). Using membrane filtration as pretreatment for reverse osmosis to improve system performance. In North American Biennial Conference of the American Desalting Association. Ionics Technical Paper.

    Google Scholar 

  • Waterhouse, S. and Hall, G. M. (1995). The validation of sterilising grade microfiltration membranes with Psedomonas diminuta. Journal of Membrane Science 104, 1–9.

    Article  CAS  Google Scholar 

  • Weber, W. J. J. (2006). Distributed optimal technology networks: An integrated concept for water reuse. Desalination 188, 163–168.

    Article  CAS  Google Scholar 

  • Worch, E. (1993). Eine neue Gleichung zur Berechnung von Diffusionskoeffizienten gelöster Stoffe. Vom Wasser 81, 289–297.

    CAS  Google Scholar 

  • Yahya, M. T., Cluff, C. B., and Gerba, C. P. (1993). Virus removal by slow sand filtration and nanofiltration. Water Science and Technology 27, 445–448.

    CAS  Google Scholar 

  • Zenon (1). Membrane water treatment systems. From Website: http://www.zenon.com/products/. 15th April 2007.

  • Zenon (2) (2005). Hurricane victims in Gulf Coast will receive clean water from water treatment systems donated by ZENON and Maytag. From Website: http://www.zenon.com/about/corporate_goodwill/hurricane_katrina.shtml.

Download references

Acknowledgments

The contributions of many colleagues and companies to the queries looking for small scale UF systems are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Schäfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Davey, J., Schäfer, A.I. (2009). Ultrafiltration to Supply Drinking Water in International Development: A Review of Opportunities. In: Yanful, E.K. (eds) Appropriate Technologies for Environmental Protection in the Developing World. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-9139-1_16

Download citation

Publish with us

Policies and ethics