Skip to main content

Genetic Background of Response of Trees to Aridification at the Xeric Forest Limit and Consequences for Bioclimatic Modelling

  • Chapter
Bioclimatology and Natural Hazards

Abstract

Trees, as dominant components of forest ecosystems, are of high ecological importance in the temperate belt and receive much attention with regard to adaptation potential and future risks of diversity loss and extinction. Much of the climate change literature however is based on simulations and models, the genetic background of which is often deduced from results with annuals or other fast reproducing organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andalo C, Beaulieu J, Bousquet J (2005) The impact of climate change on growth of local white spruce populations in Québec, Canada. For. Ecol. Manage., 205: 169–182

    Article  Google Scholar 

  • Beaulieu J, Rainville A (2004) Adaptation to climate change: genetic variation is both a short- and long term solution. The Forestry Chronicle, 81(5): 704–708

    Google Scholar 

  • Berki I, Rasztovics E (2004) [Research in drought tolerance of zonal tree species, with special regard to sessile oak.] (in Hungarian with English summary) In: Mátyás Cs, Vig P (eds.), Erdo és klima – Forest and Climate IV. Sopron, Hungary, 209–220

    Google Scholar 

  • Berki I, Móricz N, Rasztovics E, Vig P (2007) [Tolerance limits of beech.] (in Hungarian with English summary) In: Mátyás Cs, Vig P (eds.), Erdo és klima – Forest and Climate V. Sopron, Hungary, 213–218

    Google Scholar 

  • Booy GR, Hendriks JJ, Smulders MJ et al. (2000) Genetic diversity and the survival of populations. Plant Biol., 2(4): 379–395

    Article  Google Scholar 

  • Borovics A (2007) Assessment of adaptive potential of beech and sessile oak by correlative analysis of allozymatic variation patterns and climate parameters. In: Mátyás Cs (Proj. leader), Climate uncertainty and threats to forest cover. Research report, in Hungarian, 89–98

    Google Scholar 

  • Bradshaw AD (1965) Evolutionary significance of phenotypic plasticity in plants. Advances in Genet., 13: 115–155

    Article  Google Scholar 

  • Bradshaw AD (1991) Genostasis and the limits of evolution. Philos. Trans. Royal Soc., London, 333: 289–305

    Article  Google Scholar 

  • Briceno-Elizondo E, Garcia-Gonzalo G, Peltola H, Matala J, Kellomäki S (2006) Sensitivity of growth of Scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For. Ecol. Manage., 232: 152–167

    Article  Google Scholar 

  • Clausen J, Keck DD, Hiesey WW (1940) Experimental Studies on the Nature of Species. Vol I and II–IV (the additional volumes published in 1945, 1948, 1958) Carnegie Inst. Publ. Nr 520, Washington D.C.

    Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to quaternary climate change. Science, 292: 673–679

    Article  Google Scholar 

  • DeWitt TJ, Scheiner SM (2004) Phenotypic variation from single genotypes. In: DeWitt, TJ, Scheiner SM (eds.), Phenotypic Plasticity; Functional and Conceptual Approaches. Oxford University Press, Oxford, 1–9

    Google Scholar 

  • Eanes WF (1999) Analysis of selection on enzyme polymorphisms. Ann. Rev. Ecol. Syst. 30: 301–326

    Article  Google Scholar 

  • Eriksson G, Ekberg I (2001) Introduction to Forest Genetics. SLU Press, Uppsala, Sweden

    Google Scholar 

  • Etterson JR, Shaw RG (2001) Constraint to adaptive evolution in response to global warming. Science, 294, 151–154

    Article  Google Scholar 

  • Fournier N, Rigling A, Dobbertin M, Gugerli F (2006) Faible differentiation génétique á partir d’amplification aléatoire d’RAPD, entre les types de pin silvestre d’altitude et de plaine dans les Alps á climat continental. Ann. Forest Sci., 63: 431–439

    Article  Google Scholar 

  • Gálos B, Lorenz Ph, Jacob D (2007) Will dry events occur more often in Hungary in the future? Env. Res. Letters 2, doi: 10.1088/1748-9326/2/3/034006

    Google Scholar 

  • Geburek T, Turok J (eds.) (2005) Conservation and Management of Forest Genetic Resources in Europe, Arbora Publisher, Zvolen, Slovakia

    Google Scholar 

  • Hampe A, Petit R (2005) Conserving biodiversity under climate change: the rear end matters. Ecol. Letters, 8: 461–467

    Article  Google Scholar 

  • Hamrick JL (2004) Response of forest trees to global environmental changes. For. Ecol. Manage., 197(1–3): 323–336

    Article  Google Scholar 

  • Hamrick JL, Godt JW, Sherman-Broyle SL (1992) Factors influencing levels of genetic diversity in woody plants. New Forests, 6: 95–124

    Article  Google Scholar 

  • Hulme PE (2005) Adapting to climate change: is there scope for ecological management in the face of a global threat? J. Appl. Ecol., 42: 784–794

    Article  Google Scholar 

  • Huntley B (1991) How plants respond to climate change – migration rates, individualism and the consequences for plant communities. Ann. Bot., London, 67: 15–22

    Google Scholar 

  • IPCC WG II. (2007) Fourth assessment report for government and expert review. Alcamo J, Moreno JM, Nováki B (eds.) Chapter 12: Europe. Bruxelles, Belgium, 62p

    Google Scholar 

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecology Lett., 8: 1010–1020

    Article  Google Scholar 

  • Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change related growth decline at the southern edge of Fagus sylvatica. Global Change Biol., 12: 1–12

    Article  Google Scholar 

  • Kingsolver JG et al. (2001) The strength of phenotypic selection in natural populations. Am. Natur., 157(3): 245–261

    Article  Google Scholar 

  • Kramer K, Mohren G (2001) Long-term effects of climate change on carbon budgets of forests in Europe. Alterra Report, No. 194

    Google Scholar 

  • Kremer A, Le Corre V, Mariette S (1999) Population differentiation for adaptive traits and their underlying loci in forest trees. In: Mátyás Cs (ed.), Forest Genetics and Sustainability. Kluwer, Dordrecht, 59–74

    Google Scholar 

  • Krutzsch P (1974) The IUFRO 1964/8 provenance test with Norway spruce (Picea abies Karst.). Silvae Genet., 23: 58–62

    Google Scholar 

  • Langlet O (1971) Two hundred years of genecology. Taxon, 20: 653–722

    Article  Google Scholar 

  • Lapenis A, Shvidenko A, Shepaschenko D, Nilsson S, Aiyyer A (2005) Acclimation of Russian forests to recent changes. Global Change Biol., 11: 2090–2102

    Article  Google Scholar 

  • Ledig FT, Kitzmiller JH (1992) Genetic strategies for reforestation in the face of global climate change. For. Ecol. Manage., 50: 153–169

    Article  Google Scholar 

  • Linhart YB, Grant MC (1996) Evolutionary significance of local genetic differentiation in plants. Ann. Rev. Ecol. Syst., 27: 237–277

    Article  Google Scholar 

  • Loeschke V (ed.) (1987) Genetic Constraints of Adaptive Evolution. Springer Verlag, Berlin

    Google Scholar 

  • Lynch M, Lande R (1993) Evolution and extinction in response to global change. In: Kareiva PM, Kingsolver J (eds.), Biotic Interactions and Global Change. Sinauer Association, Sunderland, 234–250

    Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science, 293: 1070–1074

    Article  Google Scholar 

  • Mátyás Cs (1990) Adaptation lag: a general feature of natural populations. Invited lecture. Proc., WFGA-IUFRO Symp. Olympia, Wash. Paper no. 2.226, 10p

    Google Scholar 

  • Mátyás Cs (1994) Modelling climate change effects with provenance test data. Tree Physiol., Victoria B.C. 14: 797–804

    Google Scholar 

  • Mátyás Cs (ed.) (1997) Perspectives of Forest Genetics and Tree Breeding in a Changing World. IUFRO World Series Vol. 6. IUFRO, Vienna

    Google Scholar 

  • Mátyás Cs (ed.) (2000) Forest Genetics and Sustainability. Kluwer, Dordrecht

    Google Scholar 

  • Mátyás Cs (2004) Population, conservation and ecological genetics. In: Burley J, Evans J, Youngquist J (eds.), Encyclopedia of Forest Sciences. Elsevier Major Reference Works, Oxford, Vol 1, 188–197

    Chapter  Google Scholar 

  • Mátyás Cs (2005) Expected climate instability and its consequences for conservation of forest genetic resources. In: Geburek T and Turok J (eds.), Conservation and Management of Forest Genetic Resources in Europe. Arbora Publisher, Zvolen, Slovakia, 465–476

    Google Scholar 

  • Mátyás Cs (2006a) Migratory, genetic and phenetic response potential of forest tree populations facing climate change. Acta Silvatica et Ligniaria Hung., 2: 33–46 (http://ASLH.NYME.hu)

    Google Scholar 

  • Mátyás Cs (2006b) The missing link: synthesis of forest genetics and ecological research in view of challenges of environmental change. In: von Wühlisch G (ed.). Forest Genetics and its Contribution to Sustainability. Mitt. BFH, Nr 221, Kommissionsverlag, Hamburg, 1–14

    Google Scholar 

  • Mátyás Cs, Nagy L (2005) Genetic potential of plastic response to climate change. In: Konnert M (ed.), Tagungsberichte, Forum Genetik und Wald 2004. Bavarian Centre f. For. Repr. Material, Teisendorf, 55–69

    Google Scholar 

  • Mátyás Cs, Yeatman CW (1987) Adaptive variation of height growth of Pinus banksiana populations (in Hungarian with English summary). EFE Tud. Közl., (Scientific Proceeding of Sopron University, Hungary), 1–2: 191–197

    Google Scholar 

  • Mátyás Cs, Yeatman CW (1992) Effect of geographical transfer on growth and survival of jack pine (Pinus banksiana Lamb.) populations. Silvae Genet., 43(6): 370–376.

    Google Scholar 

  • Müller-Starck G, Schubert R (eds.) (2001) Genetic Response of Forest systems to Changing Environmental Conditions. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Morgenstern, E.K. 1996. Geographic Variation in Forest Trees. UBC Press, Vancouver

    Google Scholar 

  • Namkoong G (2001) Forest genetics – pattern and complexity. Can. J. For. Res., 31(4): 623–632

    Article  Google Scholar 

  • Neale DB, Wheeler NC (2004) Mapping of quantitative trait loci in loblolly pine and Douglas fir: a summary. Forest Genet. 11(3–4): 173–178

    Google Scholar 

  • Peñuelas J, Lloret F, Montoya R (2001) Severe drought effects on Mediterranean woody flora in Spain. Forest Science, 47: 214–218

    Google Scholar 

  • Persson B, Beuker E (1996) Distinguishing between effects of changes in temperature and light climate using provenance trials with Pinus sylvestris in Sweden. Can. J. For. Res., 26: 572–579

    Google Scholar 

  • Persson A, Persson B (1992) Survival, growth and quality of Norway spruce (Picea abies (L.) Karst.) provenances at the three Swedish sites of the IUFRO 1964/68 provenance experiment. Swedish University of Agriculture Sciences, Department of Forest Yield Research. Report 29. 1–67

    Google Scholar 

  • Petit R, Kremer A et al. (2002) Identification of refugia and postglacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For. Ecol. Manage., 156: 27–40

    Article  Google Scholar 

  • Pigott CD, Pigott S (1993) Water as determinant of the distribution of trees at the boundary of the Mediterranean zone. J. Ecol., 81: 557–566

    Article  Google Scholar 

  • Piovesan G, DiFilippo AA (2005) Structure, dynamics and dendroecology of an old-growth Fagus forest in the Appenines. J. Veget. Sci., 16: 13–28

    Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Barnhardt LK (1999) Efficacy of climate transfer-functions – introduction of Eurasian populations of Larix into Alberta. Can. J. For. Res., 29: 1660–1668

    Article  Google Scholar 

  • Rehfeldt GE, Tchebakova NM, Milyutin LI, Parfenova EI, Wykoff WR, Kouzmina NA (2003) Assessing population responses to climate in Pinus sylvestris and Larix spp. of Eurasia with climate transfer models. Eurasian J. For. Res., 6(2): 83–98

    Google Scholar 

  • Savolainen O, Bokma F, García-Gil R, Komulainen P, Repo T (2004) Genetic variation in cessation of growth and frost hardiness and consequences for adaptation of Pinus sylvestris to climatic changes. For. Ecol. Manage., 197: 79–89

    Article  Google Scholar 

  • Savolainen O (1994) Genetic variation and fitness: conservation lessons from pines. In: Loeschke V et al. (eds.), Conservation Genetics. Birkhaeuser Verlag, Basel, 27–36

    Google Scholar 

  • Shutyaev AN, Giertych M (1997) Height growth variation in a comprehensive Eurasian provenance experiment of Pinus sylvestris L. Silvae Genet., 46: 332–349

    Google Scholar 

  • Skrøppa T, Johnsen G (2000) Pattern of adaptive variation in forest tree species: the reproductive element as an evolutionary force in Picea abies. In: Mátyás Cs (ed.). Forest Genetics and Sustainability. Kluwer Academic, Dordecht, 49–58

    Google Scholar 

  • Spiecker H, Mielikäinen K, Köhl M, Skovsgard JP (eds.) (1996) Growth trends in European forests. EFI Report 5, Springer Verlag, Berlin

    Google Scholar 

  • Turesson G (1925) The plant species in relation to habitat and climate. Hereditas, 6: 147–236

    Article  Google Scholar 

  • Ujvári Jármay É, Ujvári F (2006) Adaptation of progenies of a Norway spruce provenance test to local environment. Acta Silvatica et Ligniaria Hung., 2: 47–56 (http://ASLH.NYME.hu)

  • Wang T, Hamann A, Yanchuk A, O’Neill GA, Aitken SN (2006) Use of response functions in selecting lodgepole pine populations for future climates. Global Change Biol., 12: 2414–2416

    Google Scholar 

  • Weis AE, Simms EL, Hochberg ME (2000) Will plant vigor and tolerance be genetically correlated? Evol. Ecol., 14: 331–352

    Article  Google Scholar 

  • Woods A, Coates KD, Hamann A (2005) Is an unprecedented Dothiostoma needle blight epidemic related to climate change? BioScience, 55(9): 761–769.

    Article  Google Scholar 

  • Westphal RD, Millar CI (2004) Genetic consequences of forest population dynamics influenced by historic climate variability in the western USA. For. Ecol. Manage., 197(Special issue): 159–170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cs. Mátyás .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mátyás, C., Nagy, L., Jármay, É.U. (2009). Genetic Background of Response of Trees to Aridification at the Xeric Forest Limit and Consequences for Bioclimatic Modelling. In: Střelcová, K., et al. Bioclimatology and Natural Hazards. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8876-6_16

Download citation

Publish with us

Policies and ethics