Skip to main content

Abstract

The robust performance of a control design scheme for sloshing suppression and container positioning during liquid transfer using robotic manipulators is studied with respect to parametric uncertainty. The control scheme combines a partial inverse dynamics controller with a heuristically tuned PID controller. Robustness is studied with respect to uncertainties on the parameters of the liquid, namely the liquid’ s density and viscosity, as well as the liquid’ s level within the tank. The range of uncertainties that can be well tolerated without critical deterioration of the closed-loop performance is determined using simulation results. Moreover, an enhancement of the control design scheme is proposed that improves robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • K. Yano, S. Higashikawa and K. Terashima, “Motion control of liquid container considering an inclined transfer path,” Control Engineering Practice, vol. 10, pp. 465-472, 2002.

    Article  Google Scholar 

  • J. Feddema, C. Dohrmann, G. Parker, R. Robinett, V. Romero and D. Schmitt, “Robotically controlled slosh-free motion of an open container of liquid,” in Proc. of the 1996 IEEE International Conf. on Robotics and Automation, Mineapolis, Minnesota, 1996, pp. 596-602.

    Google Scholar 

  • K. Terashima, M, Hamaguchi and K. Yamaura, “Modeling and input shaping control of liquid vibration for an automated pouring system,” in 35th Conf. on Decision Control, Kobe, Japan, 1996, pp. 4844-4850.

    Google Scholar 

  • J. Feddema, C. Dohrmann, G. Parker, R. Robinett, V. Romero and D. Schmitt, “Control for slosh-free motion of an open container,” IEEE Control Systems Magazine, vol. 17, no. 1, pp. 29-36, 1997

    Article  Google Scholar 

  • K. Yano and K. Terashima, “Robust liquid container transfer control for complete sloshing suppression,” IEEE Transactions on Control Systems Technology, vol. 9, no. 3, pp. 483-493, 2001.

    Article  Google Scholar 

  • K. Yano, S. Higashikawa and K. Terashima, “Liquid container transfer control on 3D transfer path by hybrid shaped approach,” 2001 IEEE Int. Conf. on Control Applications, 2001, Mexico City, pp. 1168-1173.

    Google Scholar 

  • K. Yano, T. Toda and K. Terashima, “Sloshing suppression control of automatic pouring robot by hybrid shape approach,”, 40th IEEE Conf. on Decision and Control, Orlando, Florida, USA, 2001, pp. 1328-1333.

    Google Scholar 

  • K. Terashima and K. Yano, “Sloshing analysis and suppression control of tilting-type automatic pouring machine,”Control Engineering Practice, vol. 9, pp. 607-620, 2001

    Article  Google Scholar 

  • H. Sira-Ramirez, “A flatness based generalized PI control approach to liquid sloshing regulation in a moving container,” in Proc. of the American Control Conf., Anchorage, USA, 2002, pp. 2909-2914.

    Google Scholar 

  • S. Kimura, M. Hamaguchi and T. Taniguchi, “Damping control of liquid container by a carrier with dual swing type active vibration reducer,” in Proc. of the 41st SICE Annual Conf., 2002, pp. 2385- 2388.

    Google Scholar 

  • Y. Noda, K. Yano and K. Terashima, “Tracking to moving object and sloshing suppression control using time varying filter gain in liquid container transfer,” 2003 SICE Annual Conf., Fukui, Japan, 2003, pp. 2283-2288.

    Google Scholar 

  • M. Hamaguchi, K. Terashima, H. Nomura, “Optimal control of liquid container transfer for several performance specifications,” Journal of Advanced Automation Technology, vol. 6, pp. 353-360, 1994.

    Google Scholar 

  • J. Feddema, C. Dohrmann, G. Parker, R. Robinett, V. Romero and D. Schmitt, “A comparison of maneuver optimization and input shaping filters for robotically controlled slosh-free motion of an open container of liquid”, American Control Conf., Albuquerque, New Mexico, 1997, pp. 1345-1349.

    Google Scholar 

  • M.P. Tzamtzi, F.N. Koumboulis, N.D. Kouvakas, G.E. Panagiotakis, “A Simulated Annealing Controller for Sloshing Suppression in Liquid Transfer”, 14th Mediterranean Conf. on Control and Automation, Ancona, Italy, 2006.

    Google Scholar 

  • M.P. Tzamtzi, F.N. Koumboulis, N.D. Kouvakas, “A two stage robot control for liquid transfer”, 12th IEEE Conf. on Emerging Technologies and Factory Automation (ETFA 2007), Greece, pp. 1324-1333, 2007.

    Google Scholar 

  • F.N. Koumboulis, M.P. Tzamtzi, “A metaheuristic approach for controller design of multivariable processes”, 12th IEEE Conf. on Emerging Technologies and Factory Automation (ETFA 2007), Patras, Greece, pp. 1429-1432, 2007.

    Google Scholar 

  • B. Yao, W.B. Gao, S.P. Chan and M. Cheng, “VSC coordinated control of two manipulator arms in the presence of environmental constraints”, IEEE Trans. Automat. Contr.,vol. 37, pp. 1806-1812, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  • C. Canudas de Wit, B. Siciliano, G. Bastin, Theory of Robot Control, Springer- Verlag, London, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this paper

Cite this paper

Tzamtzi, M.P., Koumboulis, F.N. (2008). Robustness Of A Robot Control Scheme For Liquid Transfer. In: Sobh, T., Elleithy, K., Mahmood, A., Karim, M.A. (eds) Novel Algorithms and Techniques In Telecommunications, Automation and Industrial Electronics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8737-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-8737-0_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-8736-3

  • Online ISBN: 978-1-4020-8737-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics