Skip to main content

Developmental Trends in Targeted Radionuclide Therapy: Biological Aspects

  • Chapter
Targeted Radionuclide Tumor Therapy

Summary

Targeted radionuclide therapy of hematopoietic malignancies in the clinical setting has been achieved and similar successes with solid tumors and cells disseminated from them are likely within reach. Recombinant technologies have led to the development of a number of new targeting agents and the evaluation of a number of putative new targets is currently in progress. These advances are currently under evaluation in the preclinical setting and are expected to transition into clinical trials before long. Many of these new agents exhibit both improved pharmacological properties and enhanced cellular retention, both of which may lead to substantial improvements over existing compounds. In addition, our knowledge of basic radiobiology and its impact on the different modes of cell death is rapidly expanding, leading to new understanding in the fundamental differences between hematopoietic and epithelial tumor cells. Such knowledge will likely have a significant influence on the development of future treatment modalities. Furthermore, the complex interactions between radiation induced intracellular signaling pathways and the crucial observation that low dose radiation (e.g. less than 15 Gy) is able to significantly affect the growth of disseminated solid tumors cells suggests to us that a new era in targeted radionuclide therapy may soon be here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Goldenberg DM, Sharkey RM (2006) Advances in cancer therapy with radiolabeled monoclonal antibodies. Q J Nucl Med Mol Imaging 50(4):248-64. Review.

    CAS  PubMed  Google Scholar 

  2. DeNardo SJ, DeNardo GL (2006) Targeted radionuclide therapy for solid tumors: an overview. Int J Radiat Oncol Biol Phys 66(2 Suppl):S89-95. Review.

    CAS  PubMed  Google Scholar 

  3. Wong JY (2006) Systemic targeted radionuclide therapy: potential new areas. Int J Radiat Oncol Biol Phys 66(2 Suppl): S74-82. Review.

    CAS  PubMed  Google Scholar 

  4. Oyen WJ, Bodei L, Giammarile F, Maecke HR, Tennvall J, Luster M, Brans B (2007) Targeted therapy in nuclear medicine - current status and future prospects. Ann Oncol 18(11):1782-92. Review.

    Article  CAS  PubMed  Google Scholar 

  5. Van Essen M, Krenning EP, De Jong M, Valkema R, Kwekkeboom DJ (2007) Peptide Receptor Radionuclide Therapy with radiolabelled somatostatin analogues in patients with somatostatin receptor positive tumours. Acta Oncol 46(6):723-34. Review.

    Article  PubMed  Google Scholar 

  6. Witzig TE (2006) Radioimmunotherapy for B-cell non-Hodgkin lymphoma. Best Pract Res Clin Haematol 19(4): 655-68. Review.

    Article  CAS  PubMed  Google Scholar 

  7. Murray D, McEwan AJ (2007) Radiobiology of systemic radiation therapy. Cancer Biother Radiopharm 22(1):1-23.

    Article  CAS  PubMed  Google Scholar 

  8. Hall EJ, Giaccia AJ (2006) Radiobiology for the radiologist. Chapter 22. Lippincott Williams & Wilkins, Philadelphia, PA (ISBN 0-7817-4151-3).

    Google Scholar 

  9. Tolmachev V, Carlsson J, Lundqvist H (2004) A limiting factor for the progress of radionuclide based cancer diagnostics and therapy; availability of suitable radionuclides. Acta Oncologica 43(3):264-75.

    Article  CAS  PubMed  Google Scholar 

  10. Sundberg AL, Almquist Y, Tolmachev V, Gedda L, Orlova A, Blomquist E, Carlsson J (2003) Combined effect of gefitinib (“Iressa”, ZD1839) and targeted radiotherapy with 11At-EGF; Experimental therapy studies in vitro. Eur J Nucl Med 30:1348-1356.

    Article  CAS  Google Scholar 

  11. Nordberg E, Steffen AC, Persson M, Sundberg AL, Carlsson J, Glimelius B (2005) Cellular uptake of radioiodine delivered by trastuzumab can be modified by the addition of epidermal growth factor. Eur J Nucl Med Mol Imaging 32(7): 771-7.

    Article  CAS  PubMed  Google Scholar 

  12. Pecorino L (2005) Molecular biology of cancer. Mechanisms, targets and therapeutics. Oxford University Press, Oxford (ISBN 0-19-926472-4).

    Google Scholar 

  13. McGill MA, McGlade CJ (2004) Cellular signaling. In: The basic science of oncology (editors: Tannock IF, Hill RP, Bristow RC and Harrington L). Chapter 8. McGraw-Hill Medical Publishing Division, New York, pp. 142-66 (ISBN-13: 978-0-07-138774-3).

    Google Scholar 

  14. Bublil EM, Yarden Y (2007) The EGF receptor family: spearheading a merger of signaling and therapeutics. Curr Opin Cell Biol 19(2):124-34. Review.

    Article  CAS  PubMed  Google Scholar 

  15. Bonner JA, Harari PM, Giralt J, et al. (2006) Radiotherapy plus Cetuximab for Squamous-Cell Carcinoma of the Head and Neck. NEJM 354:567-78.

    Article  CAS  PubMed  Google Scholar 

  16. Adams GP, Weiner LM (2005) Monoclonal antibody therapy of cancer. Nat Biotechnol 23(9):1147-57. Review.

    Article  CAS  PubMed  Google Scholar 

  17. Robinson MK, Shaller C, Garmestani K, Plascjak PS, Hodge KM, Yuan QA, Marks JD, Waldmann TA, Brechbiel MW, Adams GP (2008) Effective treatment of established human breast tumor xenografts in immunodeficient mice with a single dose of the alpha-emitting radioisotope astatine-211 conjugated to anti-HER2/neu diabodies. Clin Cancer Res 14:875-82.

    Article  CAS  PubMed  Google Scholar 

  18. Heldin C-H, Rubin K, Pietras K, Östman A (2004) High interstitial fluid pressure - an obstacle in cancer therapy. Nature Rev Cancer 4:806-13.

    Article  CAS  Google Scholar 

  19. Martensson L, Nilsson R, Ohlsson T, Sjogren HO, Strand SE, Tennvall J (2007) Reduced myelotoxicity with sustained tumor concentration of radioimmunoconjugates in rats after extracorporeal depletion. J Nucl Med 48:269-76.

    PubMed  Google Scholar 

  20. Erlandsson A, Eriksson D, Johansson L, Riklund K, Stigbrand T, Sundstrom BE (2006) In vivo clearing of idiotypic antibodies with antiidiotypic antibodies and their derivatives. Mol Immunol 43:599-606.

    Article  CAS  PubMed  Google Scholar 

  21. Goldenberg DM, Sharkey RM, Paganelli G, Barbet J, Chatal JF (2006) Antibody pretargeting advances cancer radioimmunodetection and radioimmunotherapy. J Clin Oncol 24:823-34.

    Article  CAS  PubMed  Google Scholar 

  22. Goldenberg DM, Chatal JF, Barbet J, Boerman O, Sharkey RM (2007) Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther 2:19-31.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V

About this chapter

Cite this chapter

Stigbrand, T., Carlsson, J., Adams, G.P. (2008). Developmental Trends in Targeted Radionuclide Therapy: Biological Aspects. In: Stigbrand, T., Carlsson, J., Adams, G.P. (eds) Targeted Radionuclide Tumor Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8696-0_21

Download citation

Publish with us

Policies and ethics