Skip to main content

Myosin Structure

  • Chapter
Myosins

Part of the book series: Proteins and Cell Regulation ((PROR,volume 7))

Abstract

Myosin II, the myosin which has provided the most biochemical and structural data, is dimeric consisting of a long coiled-coil region with the motor domain flexibly attached to the N-terminal end of the coiled-coil. The motor domain (subfragment 1, S1, or cross-bridge) is obtained by proteolytic cleavage of myosin. S1 is a minimal model for the transport of actin filaments by myosin. S1 contains the ATPase, the actin-binding site which is regulated by ATP binding, and a long lever arm, which moves actin past myosin by a swinging motion. The lever arm is buttressed by two calmodulin-like light chains. X-ray crystallography of S1 and S1 prepared without the lever arm shows that the backbone of the molecule is a seven-stranded β-sheet. The active site is very similar to the G-proteins and contains a P-loop and switch 1 and switch 2 elements. Moreover,the motor domain can be found in three conformations that correspond with three of the four states predicted by the Lymn-Taylor cross-bridge cycle. The rotation of the lever arm (power stroke) is coupled to changes in the relative positions of switch 2 and the P-loop after ATP binding. This rotation is reversed on products release (the power stroke). The movement of switch 1, which accompanies ATP binding, is coupled with an opening or closing of a cleft in the actin-binding site, which leads to large changes in the actin affinity. Myosin V yields crystallographic data on the strong actin-binding form of the cross-bridge. Strong binding to actin is accompanied by a bending of the central β-sheet, which enables products release and hence induces the power stroke. All myosins probably use the same mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anson, M. Geeves, M. A., Kurzawa, S. E. and Manstein, D. J. (1996). Myosin motors with artificial lever arms. Embo J 15, 6069–74.

    PubMed  CAS  Google Scholar 

  • Applegate, D. and Reisler, E. (1984). Nucleotide-induced changes in the proteolytically sensitive regions of myosin subfragment 1. Biochemistry 23, 4779–84.

    Article  PubMed  CAS  Google Scholar 

  • Balint, M., Wolf, I., Tarcsafalvi, A., Gergely, J. and Sreter, F. A. (1978) Location of SH-1 and SH-2 in the heavy chain segment of heavy meromyosin. Arch Biochem Biophys 190: 793–799.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, R. (1986). The Mechanism of Muscle Contraction. CRC Crit Rev Biochem 21: 53–118.

    PubMed  CAS  Google Scholar 

  • Coureux, P. D., Sweeney, H. L. and Houdusse, A. (2004). Three myosin V structures delineate essential features of chemo-mechanical transduction. Embo J 23, 4527–37.

    Article  PubMed  CAS  Google Scholar 

  • Coureux, P. D., Wells, A. L., Menetrey, J., Yengo, C. M., Morris, C. A., Sweeney, H. L. and Houdusse, A. (2003). A structural state of the myosin V motor without bound nucleotide. Nature 425, 419–23.

    Article  PubMed  CAS  Google Scholar 

  • Dominguez, R., Freyzon, Y., Trybus, K. M. and Cohen, C. (1998). Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell 94, 559–71.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, S., Windshugel, B., Horak, D., Holmes, K. C. and Smith, J. C. (2005). Structural mechanism of the recovery stroke in the myosin molecular motor. Proc Natl Acad Sci U S A 102, 6873–8.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, A. J., Smith, C. A., Thoden, J. B., Smith, R., Sutoh, K., Holden, H. M. and Rayment, I. (1995). X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry 34: 8960–72.

    Article  PubMed  CAS  Google Scholar 

  • Foth, B. J., Goedecke, M. C. and Soldati, D. (2006). New insights into myosin evolution and classification. Proc Natl Acad Sci U S A 103, 3681–6.

    Article  PubMed  CAS  Google Scholar 

  • Fujita-Becker, S., Tsiavaliaris, G., Ohkura, R., Shimada, T., Manstein, D. J. and Sutoh, K. (2006). Functional characterization of the N-terminal region of myosin-2. J Biol Chem 281, 36102–9.

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M. A. and Holmes, K. C. (1999). Structural mechanism of muscle contraction. Annu Rev Biochem 68, 687–728.

    Article  PubMed  CAS  Google Scholar 

  • Geeves, M. A. and Holmes, K. C. (2005). The molecular mechanism of muscle contraction. Adv Protein Chem 71, 161–93.

    PubMed  CAS  Google Scholar 

  • Gourinath, S., Himmel, D. M., Brown, J. H., Reshetnikova, L., Szent-Gyorgyi, A. G. and Cohen, C. (2003). Crystal structure of scallop Myosin s1 in the pre-power stroke state to 2.6 a resolution: flexibility and function in the head. Structure (Camb) 11, 1621–7.

    Article  CAS  Google Scholar 

  • Gulick, A. M., Bauer, C. B., Thoden, J. B. and Rayment, I. (1997) X-ray structures of the MgADP, MgATPgammaS, and MgAMPPNP complexes of the Dictyostelium discoideum myosin motor domain. Biochemistry 36, 11619–28.

    Article  PubMed  CAS  Google Scholar 

  • Hodge, T. and Cope, M. J. (2000). A myosin family tree. J Cell Sci 113 Pt 19, 3353–4.

    PubMed  CAS  Google Scholar 

  • Holmes, K. C. (1996). Muscle proteins–their actions and interactions. Curr Opin Struct Biol 6, 781–9.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C. (1997). The swinging lever-arm hypothesis of muscle contraction. Curr Biol 7,R112–8.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C., Angert, I., Kull, F. J., Jahn, W. and Schroder, R. R. (2003). Electron cryo-microscopy shows how strong binding of myosin to actin releases nucleotide. Nature 425, 423–7.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C., Popp, D., Gebhard, W. and Kabsch, W. (1990). Atomic model of the actin filament. Nature 347, 44–9.

    Article  PubMed  CAS  Google Scholar 

  • Holmes, K. C., Schroder, R. R., Sweeney, H. L. and Houdusse, A. (2004). The structure of the rigor complex and its implications for the power stroke. Philos Trans R Soc Lond B Biol Sci 359, 1819–28.

    Article  PubMed  CAS  Google Scholar 

  • Hozumi, T. and Muhlrad, A. (1981). Reactive lysyl of myosin subfragment 1: location on the 27K fragment and labeling properties. Biochemistry 20, 2945–50.

    Article  PubMed  CAS  Google Scholar 

  • Huxley, A. F. and Simmons, R. (1971). Proposed Mechanism of Force Generation in Striated Muscle. Nature (Lond.) 233, 533–538.

    Article  CAS  Google Scholar 

  • Huxley, H. E. (1957). The double array of filaments in cross-striated muscle. Biophysic. and Biochem. Cytol. 3, 631–648.

    Article  CAS  Google Scholar 

  • Huxley, H. E. (1969). The Mechanism of Muscular Contraction. Science 164: 1356–1366.

    Article  PubMed  CAS  Google Scholar 

  • Kollmar, M., Durrwang, U., Kliche, W., Manstein, D. J. and Kull, F. J. (2002). Crystal structure of the motor domain of a class-I myosin. Embo J 21, 2517–25.

    Article  PubMed  CAS  Google Scholar 

  • Kron, S. J. and Spudich, J. A. (1986). Fluorescent actin filaments move on myosin fixed to a glass surface. Proc Natl Acad Sci U S A 83, 6272–6.

    Article  PubMed  CAS  Google Scholar 

  • Lymn, R. W. and Taylor, E. W. (1971). Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10, 4617–24.

    Article  PubMed  CAS  Google Scholar 

  • Margossian, S. S. and Lowey, S. (1982). Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods in Enzymology 85, 55–71.

    Article  PubMed  CAS  Google Scholar 

  • Menetrey, J., Bahloul, A., Wells, A. L., Yengo, C. M., Morris, C. A., Sweeney, H. L. and Houdusse, A. (2005). The structure of the myosin VI motor reveals the mechanism of directionality reversal. Nature 435, 779–85.

    Article  PubMed  CAS  Google Scholar 

  • Moore, P. B., Huxley, H. E. and DeRosier, D. J. (1970). Three-dimensional reconstruction of F-actin, thin filaments and decorated thin filaments. Journal of Molecular Biology 50, 279–95.

    Article  PubMed  CAS  Google Scholar 

  • Mornet, D., Bertrand, R., Pantel, P., Audemard, E. and Kassab, R. (1981). Structure of the acto-myosin interface. Nature (Lond.) 292. 301–306.

    Article  CAS  Google Scholar 

  • Park, H., Li, A., Chen, L. Q., Houdusse, A., Selvin, P. R. and Sweeney, H. L. (2007). The unique insert at the end of the myosin VI motor is the sole determinant of directionality. Proc Natl Acad Sci U S A 104, 778–83.

    Article  PubMed  CAS  Google Scholar 

  • Purcell, T. J., Morris, C., Spudich, J. A. and Sweeney, H. L. (2002). Role of the lever arm in the processive stepping of myosin V. Proc Natl Acad Sci U S A 99, 14159–64.

    Article  PubMed  CAS  Google Scholar 

  • Rayment, I., Holden, H. M., Whittaker, M., Yohn, C. B., Lorenz, M., Holmes, K. C. and Milligan, R. A. (1993b). Structure of the actin-myosin complex and its implications for muscle contraction. Science 261: 58–65.

    Article  CAS  Google Scholar 

  • Rayment, I., Rypniewski, W. R., Schmidt-Base, K., Smith, R., Tomchick, D. R., Benning, M. M., Winkelmann, D. A., Wesenberg, G. and Holden, H. M. (1993a). Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261, 50–8.

    Article  CAS  Google Scholar 

  • Reedy, M. K., Holmes, K. C. and Tregear, R. T. (1965). Induced changes in orientation of the cross-bridges of glycerinated insect flight muscle. Nature 207, 1276–80.

    Article  PubMed  CAS  Google Scholar 

  • Reubold, T. F., Eschenburg, S., Becker, A., Kull, F. J. and Manstein, D. J. (2003). A structural model for actin-induced nucleotide release in myosin. Nat Struct Biol 10: 826–30.

    Article  PubMed  CAS  Google Scholar 

  • Risal, D., Gourinath, S., Himmel, D. M., Szent-Gyorgyi, A. G. and Cohen, C. (2004). Myosin subfragment 1 structures reveal a partially bound nucleotide and a complex salt bridge that helps couple nucleotide and actin binding. Proc Natl Acad Sci U S A 101, 8930–5.

    Article  PubMed  CAS  Google Scholar 

  • Sleep, J. A. and Hutton, R. L. (1978). Actin mediated release of ATP from a myosin-ATP complex. Biochemistry 17: 5423–30.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A. and Rayment, I. (1996a). Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys. J. 70, 1590–1602.

    Article  CAS  Google Scholar 

  • Smith, C. A. and Rayment, I. (1996b). X-ray structure of the magnesium(ii).ADP.vanadate complex of the dictyostelium-discoideum myosin motor domain to 1.9Å resolution. Biochemistry 35, 5404–5417.

    Article  CAS  Google Scholar 

  • Spudich, J. A. (1994). How molecular motors work. Nature 372, 515–8.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, H. L. and Houdusse, A. (2004). The motor mechanism of myosin V: insights for muscle contraction. Philos Trans R Soc Lond B Biol Sci 359, 1829–41.

    Article  PubMed  CAS  Google Scholar 

  • Sweeney, H. L. and Houdusse, A. (2007) What can myosin VI do in cells? Curr Opin Cell Biol 19, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Szent-Györgyi, A. G. (1953) Meromyosins, the subunits of myosin. Arch Biochem Biophys 42, 305–320.

    Google Scholar 

  • Tsiavaliaris, G., Fujita-Becker, S. and Manstein, D. J. (2004). Molecular engineering of a backwards-moving myosin motor. Nature 427, 558–61.

    Article  PubMed  CAS  Google Scholar 

  • Uyeda, T. Q., Abramson, P. D. and Spudich, J. A. (1996). The neck region of the myosin motor domain acts as a lever arm to generate movement. Proc Natl Acad Sci U S A 93, 4459–64.

    Article  PubMed  CAS  Google Scholar 

  • Vale, R. D. and Milligan, R. A. (2000). The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95.

    Article  PubMed  CAS  Google Scholar 

  • Wells, A. L., Lin, A. W., Chen, L. Q., Safer, D., Cain, S. M., Hasson, T., Carragher, B. O., Milligan, R. A. and Sweeney, H. L. (1999). Myosin VI is an actin-based motor that moves backwards. Nature 401, 505–8.

    Article  PubMed  CAS  Google Scholar 

  • Yang, Y., Gourinath, S., Kovacs, M., Nyitray, L., Reutzel, R., Himmel, D. M., O’Neall Hennessey, E., Reshetnikova, L., Szent-Gyorgyi, A. G., Brown, J. H. and Cohen, C. (2007). Rigor-like structures from muscle myosins reveal key mechanical elements in the transduction pathways of this allosteric motor. Structure 15, 553–64.

    Article  PubMed  CAS  Google Scholar 

  • Yengo, C. M., De la Cruz, E. M., Chrin, L. R., Gaffney, D. P. and Berger, C. L. (2002). Actin-induced closure of the actin-binding cleft of smooth muscle myosin. Journal of Biological Chemistry 277, 24114–24119.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Holmes, K.C. (2008). Myosin Structure. In: Myosins. Proteins and Cell Regulation, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6519-4_2

Download citation

Publish with us

Policies and ethics