Skip to main content

Peroxiredoxin Systems in Mycobacteria

  • Chapter

Part of the book series: Subcellular Biochemistry ((SCBI,volume 44))

Abstract

Like other actinomycetes Mycobacterium tuberculosis lacks glutathione and, consequently, the glutathione peroxidases that dominate the antioxidant defence of its mammalian hosts. The hydrogen peroxide metabolism of the pathogen has for long been recognised to depend on a heme-containing catalase/peroxidase. Clinical isolates lacking the catalase were virulent and proved to be resistant to the first line tuberculostatic isoniazid, because the enzyme is evidently required to activate this drug. The survival and virulence of such strains are attributed to the peroxiredoxin-type peroxidases alkyl hydroperoxide reductase (AhpC) and thioredoxin peroxidase (TPx). The most common AhpC reductant in bacteria, the disulfide reductase AhpF, is deleted in M. tuberculosis. Instead, AhpC can be reduced by AhpD, a CXXC-motif-containing protein, or by one of the mycobacterial thioredoxins, TrxC. TPx is reduced by thioredoxins B and C. Mycobacteria contain three more peroxiredoxins, the 1-Cys-Prx AhpE, Bcp and BcpB, whose function and reductants are still unknown

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akif, M., Suhre, K., Verma, C., Mande, S.C., 2005, Conformational flexibility of Mycobacterium tuberculosis thioredoxin reductase: crystal structure and normal-mode analysis. Acta Crystallogr. D Biol. Crystallogr. 61: 1603–1611.

    Article  PubMed  Google Scholar 

  • Alvarez, M.N., Trujillo, M., Radi, R., 2002, Peroxynitrite formation from biochemical and cellular fluxes of nitric oxide and superoxide. Methods Enzymol. 359: 353–366.

    Article  CAS  PubMed  Google Scholar 

  • Arner, E.S., Holmgren, A., 2000, Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 267: 6102–6109.

    Article  CAS  PubMed  Google Scholar 

  • Baker, L.M., Poole, L.B., 2003, Catalytic mechanism of thiol peroxidase from Escherichia coli. Sulfenic acid formation and overoxidation of essential CYS61. J. Biol. Chem. 278: 9203–9211.

    Article  CAS  PubMed  Google Scholar 

  • Björnstedt, M., Kumar, S., Holmgren, A., 1995, Selenite and selenodiglutathione: reactions with thioredoxin systems. Methods Enzymol. 252: 209–219.

    Article  PubMed  Google Scholar 

  • Bryk, R., Griffin, P., Nathan, C., 2000, Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407: 211–215.

    Article  CAS  PubMed  Google Scholar 

  • Bryk, R., Lima, C.D., Erdjument-Bromage, H., Tempst, P., Nathan, C., 2002, Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 1073–1077.

    Article  CAS  PubMed  Google Scholar 

  • Cha, M.K., Kim, W.C., Lim, C.J., Kim, K., Kim, I.H., 2004, Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth. J. Biol. Chem. 279: 8769–8778.

    Article  CAS  PubMed  Google Scholar 

  • Chauhan, R., Mande, S. C., 2002, Site-directed mutagenesis reveals a novel catalytic mechanism of Mycobacterium tuberculosis alkylhydroperoxidase C. Biochem. J. 367: 255–261.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L., Xie, Q.W., Nathan, C., 1998, Alkyl hydroperoxide reductase subunit C (AhpC) protects bacterial and human cells against reactive nitrogen intermediates. Mol. Cell 1: 795–805.

    Article  CAS  PubMed  Google Scholar 

  • Choi, J., Choi, S., Choi, J., Cha, M.K., Kim, I.H., Shin, W., 2003, Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins. J. Biol. Chem. 278: 49478–49486.

    Article  CAS  PubMed  Google Scholar 

  • Cole, S.T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S.V., Eiglmeier, K., Gas, S., Barry, C.E., 3rd, Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., Gentles, S., Hamlin, N., Holroyd, S., Hornsby, T., Jagels, K., Krogh, A., McLean, J., Moule, S., Murphy, L., Oliver, K., Osborne, J., Quail, M.A., Rajandream, M. A., Rogers, J., Rutter, S., Seeger, K., Skelton, J., Squares, R., Squares, S., Sulston, J. E., Taylor, K., Whitehead, S., Barrell, B.G., 1998, Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Comini, M.A., Guerrero, S.A., Haile, S., Menge, U., Lünsdorf, H., Flohé, L., 2004, Valdiation of Trypanosoma brucei trypanothione synthetase as drug target. Free Radic. Biol. Med. 36: 1289–1302.

    Article  CAS  PubMed  Google Scholar 

  • Conrad, M., Jakupoglu, C., Moreno, S.G., Lippl, S., Banjac, A., Schneider, M., Beck, H., Hatzopoulos, A.K., Just, U., Sinowatz, F., Schmahl, W., Chien, K.R., Wurst, W., Bornkamm, G.W., Brielmeier, M., 2004, Essential role for mitochondrial thioredoxin reductase in hematopoiesis, heart development, and heart function. Mol. Cell. Biol. 24: 9414–9423.

    Article  CAS  PubMed  Google Scholar 

  • Dye, C., Scheele, S., Dolin, P., Pathania, V., Raviglione, M.C., 1999, Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282: 677–686.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, H.R., Poole, L. B., 1997, Roles for the two cysteine residues of AhpC in catalysis of peroxide reduction by alkyl hydroperoxide reductase from Salmonella typhimurium. Biochemistry 36: 13349–13356.

    Article  CAS  PubMed  Google Scholar 

  • Flohé, L., Brigelius-Flohé, R. Selenoproteins of the glutathione system. In: D. L. Hatfield, ed. Selenium. Its Molecular Biology and Role in Human Health, London: Kluwer Academic Publishers; 2001: 157–178.

    Google Scholar 

  • Friemann, R., Schmidt, H., Ramaswamy, S., Forstner, M., Krauth-Siegel, R.L., Eklund, H., 2003, Structure of thioredoxin from Trypanosoma brucei brucei. FEBS Lett. 554:3 01–305.

    Article  CAS  PubMed  Google Scholar 

  • Gromer, S., Urig, S., Becker, K., 2004, The thioredoxin system–from science to clinic. Med. Res. Rev. 24: 40–89.

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes, B.G., Souchon, H., Honore, N., Saint-Joanis, B., Brosch, R., Shepard, W., Cole, S.T., Alzari, P.M., 2005, Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress. J. Biol. Chem. 280: 25735–25742.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, B., Hecht, H.J., Flohé, L., 2002, Peroxiredoxins, Biol. Chem. 383:347–364.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger, T., Budde, H., Flohé, L., Menge, U., Singh, M., Trujillo, M., Radi, R., 2004, Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch. Biochem. Biophys. 423: 182–191.

    Article  CAS  PubMed  Google Scholar 

  • Jakupoglu, C., Przemeck, G.K., Schneider, M., Moreno, S.G., Mayr, N., Hatzopoulos, A.K., de Angelis, M.H., Wurst, W., Bornkamm, G.W., Brielmeier, M., Conrad, M., 2005, Cytoplasmic thioredoxin reductase is essential for embryogenesis but dispensable for cardiac development. Mol. Cell. Biol. 25: 1980–1988.

    Article  CAS  PubMed  Google Scholar 

  • Koshkin, A., Knudsen, G.M., Ortiz De Montellano, P.R., 2004, Intermolecular interactions in the AhpC/AhpD antioxidant defense system of Mycobacterium tuberculosis. Arch. Biochem. Biophys. 427: 41–47.

    Article  CAS  PubMed  Google Scholar 

  • Krauth-Siegel, R.L., Inhoff, O., 2003, Parasite-specific trypanothione reductase as a drug target molecule. Parasitol. Res. 90: S77–85.

    Article  PubMed  Google Scholar 

  • Li, S., Peterson, N.A., Kim, M.Y., Kim, C.Y., Hung, L.W., Yu, M., Lekin, T., Segelke, B.W., Lott, J.S., Baker, E.N., 2005, Crystal Structure of AhpE from Mycobacterium tuberculosis, a 1-Cys peroxiredoxin. J. Mol. Biol. 346: 1035–1046.

    Article  CAS  PubMed  Google Scholar 

  • Manca, C., Paul, S., Barry, C.E., 3rd, Freedman, V.H., Kaplan, G., 1999, Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect. Immun. 67: 74–79.

    CAS  PubMed  Google Scholar 

  • Master, S.S., Springer, B., Sander, P., Boettger, E.C., Deretic, V., Timmins, G.S., 2002, Oxidative stress response genes in Mycobacterium tuberculosis: role of ahpC in resistance to peroxynitrite and stage-specific survival in macrophages. Microbiology 148: 3139–3144.

    CAS  PubMed  Google Scholar 

  • Matsui, M., Oshima, M., Oshima, H., Takaku, K., Maruyama, T., Yodoi, J., Taketo, M. M., 1996, Early embryonic lethality caused by targeted disruption of the mouse thioredoxin gene. Dev. Biol. 178: 179–185.

    Article  CAS  PubMed  Google Scholar 

  • McKinney, J.D., Honer zu Bentrup, K., Munoz-Elias, E J., Miczak, A., Chen, B., Chan, W. T., Swenson, D., Sacchettini, J.C., Jacobs, W.R., Jr., Russell, D.G., 2000, Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735–738.

    Article  CAS  PubMed  Google Scholar 

  • Mollenkopf, H.J., Jungblut, P.R., Raupach, B., Mattow, J., Lamer, S., Zimny-Arndt, U., Schaible, U.E., Kaufmann, S.H., 1999, A dynamic two-dimensional polyacrylamide gel electrophoresis database: the mycobacterial proteome via Internet. Electrophoresis 20: 2172–2180.

    Article  CAS  PubMed  Google Scholar 

  • Newton, G.L., Fahey, R.C., 2002, Mycothiol biochemistry. Arch. Microbiol. 178: 388–394.

    Article  CAS  PubMed  Google Scholar 

  • Parrish, N.M., Dick, J.D., Bishai, W.R., 1998, Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6: 107–112.

    Article  CAS  PubMed  Google Scholar 

  • Rho, B.S., Hung, L.W., Holton, J.M., Vigil, D., Kim, S.I., Park, M.S., Terwilliger, T.C., Pedelacq, J.D., 2006, Functional and structural characterization of a thiol peroxidase from Mycobacterium tuberculosis. J. Mol. Biol. 361: 850–863.

    Article  CAS  PubMed  Google Scholar 

  • Sherman, D.R., Mdluli, K., Hickey, M.J., Arain, T.M., Morris, S.L., Barry, C.E., 3rd, Stover, C.K., 1996, Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 272: 1641–1643.

    Article  CAS  PubMed  Google Scholar 

  • Smith, I., 2003, Mycobacterium tuberculosis pathogenesis and molecular determinants of virulence. Clin. Microbiol. Rev. 16: 463–496.

    Article  CAS  PubMed  Google Scholar 

  • St John, G., Brot, N., Ruan, J., Erdjument-Bromage, H., Tempst, P., Weissbach, H., Nathan, C., 2001, Peptide methionine sulfoxide reductase from Escherichia coli and Mycobacterium tuberculosis protects bacteria against oxidative damage from reactive nitrogen intermediates. Proc. Natl. Acad. Sci. USA 98: 9901–9906.

    Article  CAS  PubMed  Google Scholar 

  • Stehr, M., Hecht, H. J., Jaeger, T., Flohé, L., Singh, M., 2006, Structure of the inactive variant C60S of Mycobacterium tuberculosis thiol peroxidase. Acta Crystallogr. D Biol. Crystallogr. 62: 563–567.

    Article  PubMed  Google Scholar 

  • Trujillo, M., Mauri, P., Benazzi, L., Comini, M., De Palma, A., Flohé, L., Radi, R., Stehr, M., Singh, M., Ursini, F., Jaeger, T., 2006, The mycobacterial thioredoxin peroxidase can act as a one-cysteine-peroxiredoxin. J. Biol. Chem. 281: 20555–20566.

    Article  CAS  PubMed  Google Scholar 

  • Williams, C.H., Arscott, L.D., Muller, S., Lennon, B.W., Ludwig, M.L., Wang, P.F., Veine, D.M., Becker, K., Schirmer, R.H., 2000, Thioredoxin reductase two modes of catalysis have evolved. Eur. J. Biochem. 267: 6110–6117.

    Article  CAS  PubMed  Google Scholar 

  • Wood, Z.A., Schröder, E., Harris, J.R., Poole, L.B., 2003, Structure, mechanism and regulation of peroxiredoxins, Trends Biochem. Sci. 28: 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Heym, B., Allen, B., Young, D., Cole, S., 1992, The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, L., Holmgren, A., 2002, Mammalian thioredoxin reductases as hydroperoxide reductases. Meth. Enzymol. 347: 236–243.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Jaeger, T. (2007). Peroxiredoxin Systems in Mycobacteria. In: Flohé, L., Harris, J.R. (eds) Peroxiredoxin Systems. Subcellular Biochemistry, vol 44. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6051-9_9

Download citation

Publish with us

Policies and ethics