Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 102))

Abstract

Although phosphate solubilizing capabilities seem to be widespread within bacterial taxa, it is surprising, that the description of phosphate solubilizing bacteria is restricted to relatively few bacterial genera. Among the bacteria, strains belonging to the genus Rhizobium and related organisms have been investigated most extensively until now. In addition, several other organisms belonging to taxonomically different and phylogenetic largely unrelated genera (e.g. Bacillus, Paenibacillus, Escherichia, Enterobacter, Rahnella, Pseudomonas, Burkholderia and some others) have been studied for their potential to solubilize phosphate. This report gives a short overview on the taxonomy of these genera and some reommendations for identification of unknown organisms with phosphate solubilizing potential in the light of microbial diversity in soil and the current species “definition” in bacteriology.

as of 2003

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Babu-Khan S, Yeo T C, Martin W L, Duron M R, Rogers R D and Goldstein A H 1995 Cloning of a mineral phosphatesolubilizing gene from Pseudomonas cepacia. Appl. Environ. Microbiol. 61, 972–978.

    PubMed  CAS  Google Scholar 

  • Berkeley R, Heyndrickx M, Logan N and De Vos P 2002 Applications and Systematics of Bacillus and Relatives. Blackwell Publishing, Malden, USA.

    Google Scholar 

  • Bowen G D and Rovira A D 1999 The rhizosphere and its management to improve plant growth. Adv. Agron. 66, 1–102.

    Google Scholar 

  • Brämer C O, Vandamme P, da Silva L F, Gomez J G C and Steinbüchel A 2001 Burkholderia sacchari sp. nov., a polyhydroxyalkanoate-accumulating bacterium isolated from soil of a sugar-cane plantation in Brazil. Int. J. Syst. Evol. Microbiol. 51, 1709–1713.

    PubMed  Google Scholar 

  • Chabot R, Antoun H, Kloepper J W and Beauchamp C J 1996 Root colonization of maize and lettuce by bioluminescent Rhizobium leguminosarum biovar phaseoli. Appl. Environ. Microbiol. 62, 2767–2772.

    PubMed  CAS  Google Scholar 

  • Dabboussi F, Hamze M, Singer E, Geoffroy V, Meyer J M and Izard D 2002 Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int. J. Syst. Evol. Microbiol. 52, 363–376.

    PubMed  CAS  Google Scholar 

  • Gerretsen F C 1984 The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1, 51–81.

    Article  Google Scholar 

  • Glick B R 1995 The enhancement of plant growth by free living bacteria. Can. J. Microbiol. 41, 109–117.

    Article  CAS  Google Scholar 

  • Goldstein A and Liu S T 1987 Molecular cloning and regulation of a mineral phosphate solubilizing gene from Erwinia herbicola. Biotechnology 5, 72–74.

    Article  CAS  Google Scholar 

  • Goldstein A H, Braverman K and Osorio N 1999 Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) rhizobacterium. FEMS Microbiol. Ecol. 30, 295–300.

    Article  PubMed  CAS  Google Scholar 

  • He Z L, Wu J, O’Donnell A G and Syers J K 1997 Seasonal responses in microbial biomass carbon, phosphorus and sulphur in soils under pasture. Biol. Fertil. Soils 24, 421–428.

    Article  CAS  Google Scholar 

  • Hedley M J, Mortvedt J J, Bolan N S and Syers J K 1995 Phosphorus fertility management in agroecosystems. In Phosphorus in the Global Environment: Transfers, Cycles and Management. Ed. H Tiessen. pp. 59–92. Wiley & Sons, Chichester.

    Google Scholar 

  • Hughes J B, Hellmann J J, Ricketts T H and Bohannan B J M 2001 Counting the uncountable: statistic approaches to estimating microbial diversity. Appl. Environ. Microbiol. 67, 4399–4406.

    Article  PubMed  CAS  Google Scholar 

  • Jana B B, Chakraborty P, Biswas J K and Ganguly S 2001 Biogeochemical cycling bacteria as indices of pond fertilization: importance of CNP ratios of input fertilizers. J. Appl. Microbiol. 90, 733–740.

    Article  PubMed  CAS  Google Scholar 

  • Johri J K, Surange S and Nautiyal C S 1999 Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr. Microbiol. 39, 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Kim K Y, Jordan D and Krishnan H B 1998 Expression of genes from Rahnella aquatilis that are necessary for mineral phosphate solubilization in Escherichia coli. FEMS Microbiol. Lett. 159, 121–127.

    PubMed  CAS  Google Scholar 

  • Kucey R M N, Janzen H H and Leggett M E 1989 Microbially mediated increases in plant-available phosphorus. Adv. Agron. 42, 199–228.

    Article  CAS  Google Scholar 

  • Leggett M, Gleddie S and Holloway G 2001 Phosphatesolubilising microorganisms and their use. In Plant Nutrient Acquisition: New Perspectives. Eds. N Ae, J Arihara, K Okada and A Srinivasan. pp. 299–318. Springer Verlag, Tokyo.

    Google Scholar 

  • Liu S T, Lee L Y, Tai C Y, Hug C H, Chang Y S, Wolfram J H and Rogers Goldstein A H 1992 Cloning of an Erwinia herbicola gene necessary for gluconi acid production and enhanced mineral phosphate solubiliza in Escherichia coli HB101: nucleotide sequence and probab involvement in biosynthesis of the coenzyme pyrroloquinoli quinone. J. Bacteriol. 174, 5814–5819.

    PubMed  CAS  Google Scholar 

  • Lugtenberg B J J, Dekkers L and Bloemberg G V 2001 Molecular determinants of rhizosphere colonization by Pseudomonas. Annu. Rev. Phytopathol. 39, 461–490.

    Article  PubMed  CAS  Google Scholar 

  • Macklon A E S, Grayston S J, Shand C A, Sim A, Sellars S and Ord B G 1997 Uptake and transport of phosphorus by Agrostis capillaris seedlings from rapidly hydrolysed organic sources extracted from 32P-labelled bacterial cultures. Plant Soil 190, 163–167.

    Article  CAS  Google Scholar 

  • McLaughlin M J, Alston A M and Martin J K 1988 Phosphorus cycling in wheat-pasture rotations. II. The role of the microbial biomass in phosphorus cycling. Aust. J. Soil Res. 26, 333–342.

    Article  Google Scholar 

  • Raghothama K G 1999 Phosphate acquisition. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 665–693.

    Article  PubMed  CAS  Google Scholar 

  • Ratti N, Kumar S, Verma H N and Gautam S P 2001 Improvement in bioavailability of tricalcium phosphate to Cymbopogon martini var. motia by rhizobacteria, AMF an Azospirillum inoculation. Microbiol. Res. 156, 145–149.

    Article  PubMed  CAS  Google Scholar 

  • Richardson A E 2001 Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust. J. Plant Physiol. 28, 897–906.

    Google Scholar 

  • Richardson A E, Hadobas P A, Hayes J E, O’Hara C P and Simpson R J 2001 Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229, 47–56.

    Article  CAS  Google Scholar 

  • Rodríguez H and Fraga R 1999 Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–339.

    Article  PubMed  Google Scholar 

  • Rodríguez H, Gonzalez T and Selman G 2000 Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains. J. Biotechnol. 84, 155–161.

    Article  Google Scholar 

  • Rojas A, Holguin G, Glick B R and Bashan Y 2001 Synergism between Phyllobacterium sp. (N(2)-fixer) and Bacillus licheniformis (P-solubilizer), both from a semiarid mangrove rhizosphere. FEMS Microbiol. Ecol. 35, 181–187.

    Article  PubMed  CAS  Google Scholar 

  • Rosselló-Mora R and Amann R 2001 The Species concept for prokaryotes. FEMS Microbiol. Rev. 25, 39–67.

    Article  PubMed  Google Scholar 

  • Rosselló-Mora R and Kämpfer P 2004 Defining microbial diversity — the species concept for prokaryotic and eukaryotic microorgansms. In Microbial Diversity and Bioprospectives, Ed. A Bull. ASM Press, Washington, 29–39.

    Google Scholar 

  • Rossolini G M, Schippa S, Ricccio M L, Berlutti F, Macaskie L E and Thaller M C 1998 Bacterial nonspecific acid phosphohydrolases: physiology, evolution, and use as tools in microbial biotechnology. Cell. Mol. Life Sci. 54, 833–850.

    Article  PubMed  CAS  Google Scholar 

  • Stackebrandt E, Frederiksen W, Garrity G M, Grimont P A D, Kämpfer P, Maiden M C J, Nesme X, Rossellö-Mora R, Swings J, Trüper H G, Vauterin L, Ward A C and Whitman W B 2002 Report of the ad hoc committee for the reevaluation of the species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 52, 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  • Vandamme P, Pot B, Gillis M, De Vos P, Kersters K and Swings J 1996 Polyphasic taxonomy, a consensus approach to bacterial systematics. Microb. Rev. 60, 407–438.

    CAS  Google Scholar 

  • Wayne L G, Brenner D J, Colwell R R, Grimont P A D, Kandler O, Krichevsky M I, Moore L H, Moore W E C, Murray R G E, Stackebrandt E, Starr M P and Trüper H G 1987 Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464.

    Article  Google Scholar 

  • Willems A 2006 Taxonomy of Rhizobia — On Overview. Plant Soil 287, 3–14.

    Article  CAS  Google Scholar 

  • Young J M 2001 Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy. Int. J. Syst. Evol. Microbiol. 51, 945–953.

    PubMed  CAS  Google Scholar 

  • Young J M, Kuykendall L D, Martínez-Romero E, Kerr A and Sawada H 2001 A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. Int. J. Syst. Evol. Microbiol. 51, 89–103.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. Velázquez C. Rodríguez-Barrueco

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Kämpfer, P. (2007). Taxonomy of phosphate solublizing bacteria. In: Velázquez, E., Rodríguez-Barrueco, C. (eds) First International Meeting on Microbial Phosphate Solubilization. Developments in Plant and Soil Sciences, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5765-6_13

Download citation

Publish with us

Policies and ethics