Skip to main content

Post-Perovskite MgSiO3 Investigated by First Principles

  • Chapter
Superplumes: Beyond Plate Tectonics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Badro, J., G. Fiquet, F. Guyot, J.-P. Rueff, V.V. Struzhkin, G. Vanko, and G. Monaco (2003) Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science, 300, 789–791.

    Article  Google Scholar 

  • Badro, J., J.-P. Rueff, G. Vanko, G. Monaco, G. Fiquet, and F. Guyot (2004) Electronic transitions in perovskite: Possible nonconvecting layers in the lower mantle. Science, 305, 383–386.

    Article  Google Scholar 

  • Bagno, P., O. Jepsen, and O. Gunnarsson (1989) Ground-state properties of third-row elements with nonlocal density functionals. Phys. Rev. B, 40, 1997–2000.

    Article  Google Scholar 

  • Baroni, S., S. de Gironcoli, A. Dal Corso, and P. Giannozzi (2001) Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys., 73, 515–562.

    Article  Google Scholar 

  • Boehler, R. (1993) Temperature in the earth’s core from melting-point measurements of iron at high static pressures. Nature, 363, 534–536.

    Article  Google Scholar 

  • Caracas, R., R. Wentzcovitch, G.D. Price, and J. Brodholt (2005) CaSiO3 Perovskite at lower mantle pressures. Geophys. Res. Lett., 32, 06306.

    Article  Google Scholar 

  • Ceperley, D., and B. Alder (1980) Ground state of the electron gas by a stochastic method. Phys. Rev. Lett., 45, 566–569.

    Article  Google Scholar 

  • Demuth, T., Y. Jeanvoine, J. Hafner, and J.G. Angyan (1999) Polymorphism in silica studied in the local density and generalized-gradient approximations. J. Phys.: Condens. Matter, 11, 3833–3874.

    Article  Google Scholar 

  • Fiquet, G., A. Dewaele, D. Andrault, M. Kunz, and T. Le Bihan (2000) Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett., 27, 21–24.

    Article  Google Scholar 

  • Hamann, D.R. (1996) Generalized gradient theory for silica phase transitions. Phys. Rev. Lett., 76, 660–663.

    Article  Google Scholar 

  • Hamann, D.R. (1997) H2O hydrogen bonding in density-functional theory. Phys. Rev. B, 55, R10157–R10160.

    Article  Google Scholar 

  • Hamann, D.R., M. Schlüter, and C. Chiang (1979) Norm-conserving pseudopotentials. Phys. Rev. Lett., 43, 1494–1497.

    Article  Google Scholar 

  • Helffrich, G.R., and B.J. Wood (2001) The Earth’s mantle. Nature, 412, 501–507.

    Article  Google Scholar 

  • Hill, R. (1963) Elastic properties of reinforced solids: Some theoretical principles. J. Mech. Phys. Solids, 11, 357–372.

    Article  Google Scholar 

  • Hohenberg, P., and W. Kohn (1964) Inhomogeneous electron gas. Phys. Rev., 136, B864–871.

    Article  Google Scholar 

  • Hyde, B., and S. Andersson (1989) Inorganic Crystal Structures, Wiley, New York.

    Google Scholar 

  • Iitaka, T., K. Hirose, K. Kawamura, and M. Murakami (2004) The elasticity of the MgSiO3 post-perovsktie phase in the Earth’s lowermost mantle. Nature, 430, 442–445.

    Article  Google Scholar 

  • Ita, J., and S.D. King (1998) The influence of thermodynamic formulation on simulations of subduction zone geometry and history. Geophys. Res. Lett., 25, 1463–1466.

    Article  Google Scholar 

  • Karato, S. (1998) Some remarks on the origin of seismic anisotropy in the Dʺ layer. Earth Planets Space, 50, 1019–1028.

    Google Scholar 

  • Karki, B.B., R.M. Wentzcovitch, S. de Gironcoli, and S. Baroni (1999) First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science, 286, 1705–1707.

    Article  Google Scholar 

  • Karki, B.B., R.M. Wentzcovitch, S. de Gironcoli, and S. Baroni (2000a) Ab initio lattice dynamics of MgSiO3 perovskite at high pressure. Phys. Rev. B, 62, 14750–14756.

    Article  Google Scholar 

  • Karki, B.B., R.M. Wentzcovitch, S. de Gironcoli, and S. Baroni (2000b) High-pressure lattice dynamics and thermoelasticity of MgO. Phys. Rev. B, 61, 8793–8800.

    Article  Google Scholar 

  • Karki, B.B., R.M. Wentzcovitch, S. de Giuroncoli, and S. Baroni (2001) High-pressure elastic properties of major materials of earth’s mantle from first principles. Geophys. Res. Lett., 28, 2699–2702.

    Article  Google Scholar 

  • Kendall, J.-M., and P.G. Silver (1996) Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature, 381, 409–412.

    Article  Google Scholar 

  • Knittle, E., and R. Jeanloz (1987) Synthesis and equation of state of (Mg,Fe)SiO3 perovskite to over 100 gigapascals. Science, 235, 668–670.

    Article  Google Scholar 

  • Kohn, W., and L.J. Sham (1965) Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138.

    Article  Google Scholar 

  • Lay, T., E.J. Garnero, and Q. Williams (2004) Partial melting in a thermo-chemical boundary layer at the base of mantle. Phys. Earth Planet. Int., 146, 441–467.

    Article  Google Scholar 

  • Lay, T., and D.V. Helmberger (1983) A lower mantle S wave triplication and the shear velocity structure of Dʺ. Geophys. J. R. Astron. Soc., 75, 799–838.

    Google Scholar 

  • Lay, T., Q. Williams, and E.J. Garnero (1998) The core-mantle boundary layer and deep earth dynamics. Science, 392, 461–468.

    Google Scholar 

  • Liu, L.-G. (1974) Silicate perovskite from phase transformation of pyrope-garnet at high pressure and temperature. Geophys. Res. lett., 1, 277–280.

    Google Scholar 

  • Mao, W.L. et al. (2004) Ferromagnesian postperovskite silicates in the Dʺ layer of the Earth. Proc. Natl. Acad. Sci., 101, 15867–15869.

    Article  Google Scholar 

  • Maruyama, S., D.A. Yuen, and B.F. Windley (2007) Dynamics of plumes and superplumes through time. In Yuen, D.A., S. Maruyama, S. Karato, and B.F. Windley (eds.) Superplumes: Beyond Plate Tectonics, Springer, Dordrecht, pp. 441–502.

    Google Scholar 

  • Masters, G., G. Laske, H. Bolton, and A. Dziewonski (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In Karato, S., A. Forte, R. Liebermann, G. Masters, and L. Stixrude (eds.) Earth’s Deep Interior, Geophysical Monograph, Vol. 117, American Geophysical Union, Washington, DC, pp. 63–87.

    Google Scholar 

  • Matyska, C., and D.A. Yuen (2005) The importance of radiative heat transfer on superplumes in the lower mantle with the new post-perovskite phase change. Earth Planet. Sci. Lett., 234, 71–81.

    Article  Google Scholar 

  • McNamara, A.K., P.E. van Keken, and S. Karato (2002) Development of anisotropic structure in the Earth’s lower mantle by solid-state convection. Nature, 416, 310–314.

    Article  Google Scholar 

  • Meade, C., H.K. Mao, and J. Hu (1995) High-temperature phase transition and dissociation of (Mg,Fe)SiO3 perovskite at lower mantle pressures. Science, 268, 1743–1745.

    Article  Google Scholar 

  • Murakami, M. et al. (2004) Post-perovskite phase transition in MgSiO3. Science, 304, 855–858.

    Article  Google Scholar 

  • Murakami M., K. Hirose, N. Sata, and Y. Ohishi (2005) Post-perovskite phase transition and mineral chemistry in the pyrolitic lowermost mantle. Geophys. Res. Lett., 32, L03304, doi:10.1029/2004GL021956.

    Article  Google Scholar 

  • Musgrave, M.J.P. (1970) Crystal Acoustics, Holden-Day, Boca Raton, Fla.

    Google Scholar 

  • Nakagawa, T., and P.J. Tackley (2004) Effects of a perovskite-post perovskite phase change near core-mantle boundary in compressible mantle convection. Geophys. Res. Lett., 31, L16611, doi:10.1029/2004GL020648.

    Article  Google Scholar 

  • Nastar, M., and F. Willaime (1995) Tight-binding calculation of the elastic constants of fcc and hcp transition metals. Phys. Rev. B, 51, 6896–6907.

    Article  Google Scholar 

  • Nielsen, O.H., and R.M. Martin (1985) Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs. Phys. Rev. B, 32, 3792–3805.

    Article  Google Scholar 

  • Oganov, A.R., and S. Ono (2004) Theoretical and experimental evidence for a postperovskite phase of MgSiO3 in Earth’s Dʺ layer. Nature, 430, 445–448.

    Article  Google Scholar 

  • Ono, S., T. Kikegawa, and Y. Ohishi (2005a) A high-pressure and high-temperature synthesis of platinum carbide. Solid State Comm., 133, 55–59.

    Article  Google Scholar 

  • Ono S., Y. Ohishi, M. Isshiki, and T. Watanuki (2005b) In situ X-ray observations of phase assemblages in peridotite and basalt compositions at lower mantle conditions: Implications for density of subducted oceanic plate. J. Geophys. Res., 110, B02208, doi:10.1029/2004JB003196.

    Article  Google Scholar 

  • Perdew, J.P., K. Burke, and M. Ernzerhof (1996) Generalized gradient approximation made simple. Phys. Rev. Lett., 77, 3865–3868.

    Article  Google Scholar 

  • Perdew, J., and A. Zunger (1981) Self-interaction correction to density functional approximations for many-electron systems. Phys. Rev. B, 23, 5048–5079.

    Article  Google Scholar 

  • Pulliam, J., and M.K. Sen (1998) Seismic anisotropy in the core-mantle transition zone. Geophys. J. Int., 135, 113–128.

    Article  Google Scholar 

  • Saxena, S.K. et al. (1996) Stability of pero vskite (MgSiO3) in the earth’s mantle. Science, 274, 1357–1359.

    Article  Google Scholar 

  • Shim, S.-H., T.S. Duffy, and G. Shen (2001) Stability and structure of MgSiO3 perovskite to 2300-kilometer depth in earth’s mantle. Science, 293, 2437–2440.

    Article  Google Scholar 

  • Sidorin, I., M. Gurnis, and D.V. Helmberger (1999) Evidence for a ubiquitous seismic discontinuity at the base of the mantle. Science, 286, 1326–1331.

    Article  Google Scholar 

  • Stackhouse, S. et al. (2005) The effect of temperature on the seismic anisotropy of the perovskite and post-perovskite polymorphs of MgSiO3. Earth Planet. Sci. Lett., 230, 1–10.

    Article  Google Scholar 

  • Stixrude, L., R.E. Cohen, and D.J. Singh (1994) Iron at high pressure: Linearized-augmented-plane-wave computations in the generalized-gradient approximation. Phys. Rev. B, 50, 6442–6445.

    Article  Google Scholar 

  • Troullier, N., and J.L. Martins (1991) Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B, 43, 1993–2006.

    Article  Google Scholar 

  • Tsuchiya, J., T. Tsuchiya, and R.M. Wentzcovitch (2005a) Vibrational and thermodynamic properties of MgSiO3 postperovskite. J. Geophys. Res., 110, B02204, doi:10.1029/2004JB003409.

    Article  Google Scholar 

  • Tsuchiya, J., T. Tsuchiya, and R.M. Wentzcovitch (2005b) Post-Rh2O3(II) transition and the high P, T phase diagram of alumina. Phys. Rev. B, 72, 020103(R).

    Article  Google Scholar 

  • Tsuchiya, T., R. Caracas, and J. Tsuchiya (2004a) First principles determination of the phase boundaries of high-presusre polymorphs of silica. Geophys. Res. Lett., 31, L11610, doi:10.1029/2004GL019649.

    Article  Google Scholar 

  • Tsuchiya, T., and K. Kawamura (2001) Systematics of elasticity: Ab initio study in B1-type alkaline earth oxides. J. Chem. Phys., 114, 10086–10093.

    Article  Google Scholar 

  • Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M.Wentzcovitch (2004b) Phase transition in MgSiO3 perovskite in the Earth’s lower mantle. Earth Planet. Sci. Lett., 224, 241–248.

    Article  Google Scholar 

  • Tsuchiya, T., J. Tsuchiya, K. Umemoto, and R.M. Wentzcovitch (2004c) Elasticity of post-perovskite MgSiO3. Geophys. Res. Lett., 31, L14603, doi:10.1029/2004GL020278.

    Article  Google Scholar 

  • Vanderbilt, D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 41, 7892–7895.

    Article  Google Scholar 

  • Wallace, D. (1972) Thermodynamics of Crystals, Wiley, New York.

    Google Scholar 

  • Wentzcovitch, R.M., B.B. Karki, M. Cococcioni, and S. de Gironcoli (2004a) Thermoelastic properties of MgSiO3 perovskite: Insights on the nature of earth’s lower mantle. Phys. Rev. Lett., 92, 018501.

    Article  Google Scholar 

  • Wentzcovitch, R.M., B.B. Karki, S. Karato, and C.R.S. Da Silva (1998) High pressure elastic anisotropy of MgSiO3 perovskite and geophysical implications. Earth Planet. Sci. Lett., 164, 371–378.

    Article  Google Scholar 

  • Wentzcovitch, R.M., J.L. Martins, and G.D. Price (1993) Ab initio molecular dynamics with variable cell shape: Application to MgSiO3. Phys. Rev. Lett., 70, 3947–3950.

    Article  Google Scholar 

  • Wentzcovitch, R.M., N. Ross, and G.D. Price (1995) Ab initio study of MgSiO3 and CaSiO3 perovskites at lower-mantle pressures. Phys. Earth Planet. Inter., 90, 101–112.

    Article  Google Scholar 

  • Wentzcovitch, R.M., L. Stixrude, B.B. Karki, and B. Kiefer (2004b) Akimotite to perovskite phase transition in MgSiO3. Geophys. Res. Lett., 31, L10611, doi:10.1029/2004GL019704.

    Article  Google Scholar 

  • Williams, Q., and R. Jeanloz (1990) Melting relations in the iron-sulfur system at ultrahigh pressures: Implications for the thermal state of the earth. J. Geophys. Res., 95, 19299–19310.

    Google Scholar 

  • Wysession, M.E. et al. (1998) Implications of the Dʺ discontinuity. In Gurnis, M., M.E. Wysession, E. Knittle, B. Buffett (eds.) The Core-Mantle Boundary Region, Geodynamic Series, Vol. 28, American Geophysical Union, Washington, DC, pp. 273–297.

    Google Scholar 

  • Wysession, M.E. et al. (1999) Lateral variations in compressional/shear velocities at the base of the mantle. Science, 284, 120–124.

    Article  Google Scholar 

  • Yamazaki, D., and S. Karato (2002) Fabric development in (Mg,Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth’s lower mantle. Phys. Earth Planet. Inter., 131, 251–267.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Tsuchiya, T., Tsuchiya, J., Wentzcovitch, R. (2007). Post-Perovskite MgSiO3 Investigated by First Principles. In: Yuen, D.A., Maruyama, S., Karato, SI., Windley, B.F. (eds) Superplumes: Beyond Plate Tectonics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5750-2_4

Download citation

Publish with us

Policies and ethics