Skip to main content

Logical Theories for Fragments of Elementary Geometry

  • Chapter
Handbook of Spatial Logics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiello, M. and van Benthem, J. (2002). A modal walk through space. Journal of Applied Non-Classical Logics, 12:319–363.

    Article  Google Scholar 

  • Artin, E. (1957). Geometric Algebra. Interscience, New York.

    Google Scholar 

  • Balbiani, P. (1998). The modal multilogic of geometry. Journal of Applied Non-classical Logics, 8:259–281.

    Google Scholar 

  • Balbiani, P., Fariñas del Cerro, L., Tinchev, T., and Vakarelov, D. (1997). Modal logics for incidence geometries. Journal of Logic and Computation, 7(1): 59–78.

    Article  Google Scholar 

  • Balbiani, P. and Goranko, V. (2002). Modal logics for parallelism, orthogonality, and affine geometries. Journal of Applied Non-Classical Logics, 12:365–397.

    Article  Google Scholar 

  • Basu, S. (1999). New results on quantifier elimination over real closed fields and applications to constraint databases. JACM, 46(4):537–555.

    Article  Google Scholar 

  • Basu, S., Pollack, R., and Roy, M.-F. (1996). On the combinatorial and algebraic complexity of quantifier elimination. Journal ACM, 43(6):1002–1045.

    Article  Google Scholar 

  • Batten, L. M. (1986). Combinatorics of Finite Geometries. CUP.

    Google Scholar 

  • Behnke, H., Bachmann, F., Fladt, K., and Kunle, H., editors (1974). Fundamentals of Mathematics, Vol. II: Geometry. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Bennett, M. K. (1995). Affine and Projective Geometry. J. Wiley, NY.

    Google Scholar 

  • Beth, E. and Tarski, A. (1956). Equilaterality as the only primitive notion of Euclidean geometry. Indag. Math., 18:462–467.

    Google Scholar 

  • Blackburn, P., de Rijke, M., and Venema, Y. (2001). Modal Logic. CUP.

    Google Scholar 

  • Bledsoe, W.W. and Loveland, D.W., editors (1984). Contemporary Mathematics: Automated Theorem Proving - After 25 Years, Providence, RI. American Mathematical Society.

    Google Scholar 

  • Blumenthal, L. (1961). A Modern View of Geometry. W.H. Freeman and Company, San Francisco.

    Google Scholar 

  • Blumenthal, L. M. and Menger, K. (1970). Studies in Geometry. W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Buchberger, B. (1985). Gröbner bases: an algorithmic method in polynomial ideal theory. In Bose, N., editor, Recent Trends in Multidimensional Systems Theory, pages 184–232. Reidel, Dordrecht.

    Google Scholar 

  • Buchberger, B., Collins, G. E., and Kutzler, B. (1988). Algebraic methods for geometric reasoning. Annual Review of Computer Science.

    Google Scholar 

  • Carnap, R. (1947). Meaning and Necessity. University of Chicago Press.

    Google Scholar 

  • Caviness, B. F. and Johnson, J. R., editors (1998). Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer, New York.

    Google Scholar 

  • Chang, C. C. and Keisler, H. J. (1973). Model Theory. North Holland Publishing Company, Amsterdam. 3rd ed. 1990.

    Google Scholar 

  • Chou, S. C. (1984). Proving elementary geometry theorems using Wu’s algorithm. In Bledsoe and Loveland, 1984, pages 243–286.

    Google Scholar 

  • Chou, S. C. (1987). A method for mechanical derivation of formulas in elementary geometry. Journal of Automated Reasoning, 3:291–299.

    Article  Google Scholar 

  • Chou, S. C. (1988). An introduction to Wu’s method for mechanical theorem proving in geometry. Journal of Automated Reasoning, 4:237–267.

    Article  Google Scholar 

  • Chou, S. C. (1990). Automated reasoning in geometries using the characteristic set method and Gröbner basis method. In Proceedings of the International Symposium on Symbolic and Algebraic Computation ISSAC’90, pages 255–260. ACM Press.

    Google Scholar 

  • Chou, S. C. and Gao, X. S. (1990). Ritt-Wu’s decomposition algorithm and geometry theorem proving. In Stickel, M. E., editor, Proc. CADE-10, volume 449 of LNCS. Springer-Verlag.

    Google Scholar 

  • Cohn, A. and Hazarika, S. (2001). Qualitative spatial representation and reasoning: an overview. Fundamenta Informaticae, 46:1–29.

    Google Scholar 

  • Collins, G. E. (1975). Quantifier elimination for the elementary theory of real closed fields by cylindrical algebraic decomposition. Lect. Notes Comput. Sci., 33:134–183.

    Google Scholar 

  • Collins, G. E. (1998). Quantifier elimination by cylindrical algebraic decomposition—twenty years of progress. In Caviness, B. F. and Johnson, J. R., editors, Quantifier Elimination and Cylindrical Algebraic Decomposition, pages 8–23. Springer-Verlag, New York.

    Google Scholar 

  • Coppel, W. A. (1998). Foundations of Convex Geometry. CUP.

    Google Scholar 

  • Coxeter, H. (1969). Introduction to Geometry. John Wiley & Sons, NY.

    Google Scholar 

  • Davenport, James H. and Heintz, Joos (1988). Real quantifier elimination is doubly exponential. J. Symb. Comput., 5(1/2):29–35.

    Article  Google Scholar 

  • de Rijke, M. (1992). The modal logic of inequality. Journal of Symbolic Logic, 57:566–584.

    Article  Google Scholar 

  • de Rijke, M. (1995). The logic of Peirce algebras. Journal of Logic, Language and Information, 4:227–250.

    Article  Google Scholar 

  • Demri, S. (1996). A simple tableau system for the logic of elsewhere. In Miglioli, P., Moscato, U., Mundici, D., and Ornaghi, M., editors, Theorem Proving with Analytic Tableaux and Related Methods, volume 1071 of LNAI. Springer.

    Google Scholar 

  • Doets, K. (1996). Basic Model Theory. CSLI Publications, Stanford.

    Google Scholar 

  • Dolzmann, A., Sturm, A., and Weispfenning, V. (1998). A new approach for automatic theorem proving in real geometry. Journal of Automated Reasoning, 21:357–380.

    Article  Google Scholar 

  • Enderton, H. (1972). A Mathematical Introduction to Logic. Harcourt Academic Press, New York. 2nd ed. 2001.

    Google Scholar 

  • Esser, M. (1951). Self-dual postulates for n-dimensional geometry. Duke Math. Journal, 18:475–479.

    Article  Google Scholar 

  • Esser, M. (1973). Self-dual axioms for many-dimensional projective geometry. Trans. Amer. Math. Soc., 177:221–236.

    Article  Google Scholar 

  • Eves, H. (1972). A Survey of Geometry. Allyn and Bacon Inc., Boston.

    Google Scholar 

  • Gabbay, D. (1981). An irreflexivity lemma with applications to axiomatizations of conditions in tense frames. In Monnich, U., editor, Aspects of Philosophical Logic, pages 67–89. Reidel, Dordrecht.

    Google Scholar 

  • Gemignani, M. (1971). Axiomatic Geometry. Addison-Wesley Publ. Co.

    Google Scholar 

  • Goldblatt, R. (1987). Orthogonality and Space-Time Geometry. Springer-Verlag.

    Google Scholar 

  • Goranko, V. (1990). Modal definability in enriched languages. Notre Dame Journal of Formal Logic, 31:81–105.

    Article  Google Scholar 

  • Goranko, V. and Passy, S. (1992). Using the universal modality: gains and questions. Journal of Logic and Computation, 2:5–30.

    Article  Google Scholar 

  • Hartshorne, R. (1967). Foundations of Projective Geometry. W. A. Benjamin Inc., New York.

    Google Scholar 

  • Heintz, J., Roy, M., and Solerno, P. (1990). Sur la complexité du principe de tarski-seidenberg. Bull. Soc. Math. France, 118:101–126.

    Google Scholar 

  • Henkin, L., Suppes, P., and Tarski, A., editors (1959). The Axiomatic Method, with Special Reference to Geometry and Physics. North-Holland Publishing Company, Amsterdam.

    Google Scholar 

  • Heyting, A. (1963). Axiomatic Projective Geometry. P. Noordhoff (Groningen) and North-Holland Publishing Company (Amsterdam).

    Google Scholar 

  • Hilbert, D. (1950). Foundations of Geometry. La Salle, Illinois.

    Google Scholar 

  • Hodges, W. (1993). Model Theory. Cambridge University Press.

    Google Scholar 

  • Hughes, D. R. and Piper, F. C. (1973). Projective Planes. Graduate Texts in Mathematics no. 6. Springer-Verlag, New York.

    Google Scholar 

  • Hughes, G. and Cresswell, M. (1996). A New Introduction to Modal Logic. Routledge.

    Google Scholar 

  • Kapur, D. (1986). Geometry theorem proving using Hilbert’s Nullstellensatz. In Proc. of SYMSAC’86, pages 202–208, Waterloo.

    Google Scholar 

  • Karzel, H., Sörensen, K., and Windelberg, D. (1973). Einführung in die Geometrie. Studia mathematica/Mathematische Lehrbücher, Taschenbuch 1. Uni-Taschenbücher, No. 184. Vandenhoeck & Ruprecht, Göttingen.

    Google Scholar 

  • Kordos, M. (1982). Bisorted projective geometry. Bull. Acad. Polon. Sci. Sér. Sci. Math., 30(no. 9–10):429–432 (1983).

    Google Scholar 

  • Kramer, R. (1993). The undefinability of intersection from perpendicularity in the three-dimensional Euclidean geometry of lines. Geometriae Dedicata, 46:207–210.

    Article  Google Scholar 

  • Lemon, O. and Pratt, I. (1998). On the incompleteness of modal logics of space: advancing complete modal logics of place. In Kracht, M., de Rijke, M., Wansing, H., and Zakharyaschev, M., editors, Advances in Modal Logic: Volume 1, pages 115–132. CSLI Publications.

    Google Scholar 

  • Lenz, H. (1954). Zur Begründung der analytischen Geometrie. S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1954, pages 17–72 (1955).

    Google Scholar 

  • Lenz, H. (1989). Zur Begründung der affinen Geometrie des Raumes. Mitt. Math. Ges. Hamburg, 11(6):763–775.

    Google Scholar 

  • Lenz, H. (1992). Konvexität in Anordnungsräumen. Abh. Math. Sem. Univ. Hamburg, 62:255–285.

    Article  Google Scholar 

  • Lombard, M. and Vesley, R. (1998). A common axiom set for classical and intuitionistic plane geometry. Annals of Pure and Applied Logic, 95: 229–255.

    Article  Google Scholar 

  • Marx, M. (1996). Dynamic arrow logic. In Marx, M., Pólos, L., and Masuch, M., editors, Arrow Logic and Multi-Modal Logic, pages 109–123. CSLI Publications.

    Google Scholar 

  • Menger, K. (1948). Independent self-dual postulates in projective geometry. Rep. Math. Colloquium (2), 8:81–87.

    Google Scholar 

  • Menger, K. (1950). The projective space. Duke Math. Journal, 17:1–14.

    Article  Google Scholar 

  • Menghini, M. (1991). On configurational propositions. Pure Math. Appl. Ser. A., 2(1–2):87–126.

    Google Scholar 

  • Meserve, B. (1983). Fundamental Concepts of Geometry. Dover Publ., New York, second edition.

    Google Scholar 

  • Mihalek, R. (1972). Projective Geometry and Algebraic Structures. Academic Press, New York.

    Google Scholar 

  • Pambuccian, V. (1989). Simple axiom systems for Euclidean geometry. Mathematical Chronicle, 18:63–74.

    Google Scholar 

  • Pambuccian, V. (1995). Ternary operations as primitive notions for constructive plane geometry VI. Math. Logic Quarterly, 41:384–394.

    Article  Google Scholar 

  • Pambuccian, V. (2001a). Constructive axiomatizations of plane absolute, Euclidean and hyperbolic geometry. Mathematical Logic Quarterly, 47: 129–136.

    Article  Google Scholar 

  • Pambuccian, V. (2001b). Fragments of Euclidean and hyperbolic geometry. Scientiae Mathematicae Japonicae, 53(2):361–400.

    Google Scholar 

  • Pambuccian, V. (2003). Sphere tangency as single primitive notion for hyperbolic and Euclidean geometry. Forum Mathematicum, 15:943–947.

    Article  Google Scholar 

  • Pambuccian, V. (2004). Axiomatizations of Euclidean geometry in terms of points, equilateral triangles or squares, and incidence. Indagationes Mathematicae, 15(3):413–417.

    Article  Google Scholar 

  • Pambuccian, V. (2006). Axiomatizations of hyperbolic and absolute geometries. In Prékopa, A. and Molnár, E., editors, Non-Euclidean Geometries: János Bolyai Memorial Volume, pages 119–153. Springer Verlag, New York.

    Google Scholar 

  • Pasch, M. (1882). Vorlesungen über neuere Geometrie. B.G.Teubner, Leipzig.

    Google Scholar 

  • Pieri, M. (1908). La geometria elementare istituita sulle nozioni “punto” e “sfera”. Memorie di Matematica e di Fisica della Societa Italiana delle Scienze, 15:345–450.

    Google Scholar 

  • Renegar, J. (1992). On the computational complexity and geometry of the first-order theory of the reals. J. Symb. Comput., 13(3):255–352.

    Article  Google Scholar 

  • Schwabhäuser, W. and Szczerba, L. (1975). Relations on lines as primitive notions for Euclidean geometry. Fund. Math., LXXXII:347–355.

    Google Scholar 

  • Schwabhäuser, W., Szmielew, W., and Tarski, A. (1983). Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin.

    Google Scholar 

  • Scott, D. (1956). A symmetric primitive of Euclidean geometry. Indag. Math., 18:456–461.

    Google Scholar 

  • Scott, D. (1959). Dimension in elementary Euclidean geometry. In Henkin et al., 1959, pages 53–67.

    Google Scholar 

  • Segerberg, K. (1981). A note on the logic of elsewhere. Theoria, 47:183–187.

    Google Scholar 

  • Seidenberg, A. (1954). A new decision method for elementary algebra. Ann. Math., 60:365–374.

    Article  Google Scholar 

  • Spaan, E. (1993). Complexity of Modal Logics. PhD thesis, University of Amsterdam.

    Google Scholar 

  • Stebletsova, V. (2000). Algebras, Relations, Geometries. PhD thesis, Zeno Institute of Philosophy, Univ. of Utrecht.

    Google Scholar 

  • Stockmeyer, L. J. (1977). The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22.

    Article  Google Scholar 

  • Szczerba, L. (1972). Weak general affine geometry. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 20:753–761.

    Google Scholar 

  • Szczerba, L. and Tarski, A. (1965). Metamathematical properties of some affine geometries. In Bar-Hillel, Y., editor, Proceedings of the 1964 International Congress for Logic, Methodology and Philosophy of Science, Studies in Logic and the Foundations of Mathematics, Amsterdam. North-Holland Publishing Company.

    Google Scholar 

  • Szczerba, L. and Tarski, A. (1979). Metamathematical discussion of some affine geometries. Fund. Math., 104:155–192.

    Google Scholar 

  • Szmielew, W. (1959). Some metamathematical problems concerning elementary hyperbolic geometry. In Henkin et al., 1959, pages 30–52.

    Google Scholar 

  • Szmielew, W. (1983). From Affine to Euclidean Geometry: An Axiomatic Approach. D. Reidel and PWN-Warsaw.

    Google Scholar 

  • Tarski, A. (1949a). On essential undecidability. Journal of Symbolic Logic, 14:75–76.

    Google Scholar 

  • Tarski, A. (1949b). Undecidability of the theories of lattices and projective geometries. Journal of Symbolic Logic, 14:77–78.

    Google Scholar 

  • Tarski, A. (1951). A decision method for elementary algebra and geometry. Technical report, UCLA. Prepared for publ. by J. McKinsey.

    Google Scholar 

  • Tarski, A. (1956). A general theorem concerning primitive notions of Euclidean geometry. Indag. Math., 18:468–474.

    Google Scholar 

  • Tarski, A. (1959). What is elementary geometry? In Henkin et al., 1959, pages 16–29.

    Google Scholar 

  • Tarski, A. (1967). The completeness of elementary algebra and geometry. Technical report, Institut Blaise Pascal, Paris.

    Google Scholar 

  • Tarski, A. and Givant, S. (1999). Tarski’s system of geometry. Bull. of Symb. Logic, 5(2):175–214.

    Article  Google Scholar 

  • Tarski, A. and Mostowski, A. (1949). Undecidability in the arithmetic of integers and in the theory of rings. Journal of Symbolic Logic, 14:76.

    Google Scholar 

  • Tarski, A., Mostowski, A., and Robinson, R. (1953). Undecidable theories. North-Holland.

    Google Scholar 

  • van Benthem, J. (1983). The Logic of Time. Kluwer.

    Google Scholar 

  • van Benthem, J. (1984). Correspondence theory. In Gabbay, D. and Guenthner, F., editors, Handbook of Philosophical Logic: Volume II, pages 167–247. Reidel.

    Google Scholar 

  • van Benthem, J. (1994). A note on dynamic arrow logics. In van Eijck, J. and Visser, A., editors, Logic and Information Flow, pages 15–29. MIT Press.

    Google Scholar 

  • van Benthem, J. (1996). Complexity of contents versus complexity of wrappings. In Marx, M., Masuch, M., and Pólos, editors, Arrow Logic and Multimodal Logic, pages 203–219. CSLI Publications, Stanford.

    Google Scholar 

  • van Benthem, J. (1999). Temporal patterns and modal structure. Logic Journal of IGPL, 7:7–26.

    Article  Google Scholar 

  • Veblen, O. (1904). A system of axioms for geometry. Transactions of the American Mathematical Society, 5:343–384.

    Article  Google Scholar 

  • Veblen, O. (1914). The foundations of geometry. In Young, J., editor, Monographs on topics of modern mathematics, relevant to the elementary field, pages 1–51. Longsman, Green, and Company, New York.

    Google Scholar 

  • Venema, Y. (1993). Derivation rules as anti-axioms in modal logic. Journal of Symbolic Logic, 58:1003–1034.

    Article  Google Scholar 

  • Venema, Y. (1999). Points, lines and diamonds: a two-sorted modal logic for projective planes. Journal of Logic and Computation, 9:601–621.

    Article  Google Scholar 

  • von Plato, J. (1995). The axioms of constructive geometry. Annals of Pure and Applied Logic, 76:169–200.

    Article  Google Scholar 

  • von Wright, G. (1979). A modal logic of place. In Sosa, E., editor, The Philosophy of Nicholas Rescher, pages 65–73. Reidel.

    Google Scholar 

  • Wu, W. (1984). Some recent advances in mechanical theorem proving in geometries. In Bledsoe and Loveland, 1984, pages 235–242.

    Google Scholar 

  • Wu, W. (1986). Basic principles of mechanical theorem proving in geometries. Journal of Automated Reasoning, 2(4):221–252.

    Google Scholar 

  • Ziegler, M. (1982). Einige unentscheidbare Körpertheorien. Enseign. Math. (2), 28(3–4):269–280.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Balbiani, P., Goranko, V., Kellerman, R., Vakarelov, D. (2007). Logical Theories for Fragments of Elementary Geometry. In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds) Handbook of Spatial Logics. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-5587-4_7

Download citation

Publish with us

Policies and ethics