Skip to main content

Frequency and Magnitude of Events

  • Reference work entry
  • First Online:
Encyclopedia of Natural Hazards

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Definitions

Frequency. The frequency of a natural hazard event is the number of times it occurs within a specified time interval.

Magnitude. The magnitude of a natural hazard event is related to the energy released by the event. It is distinguished from intensity which is related to the effects at a specific location or area.

Introduction

The magnitude of a natural hazard event varies in its frequency of occurrence over time in an inverse power relationship. The relationship is often depicted as log-normal (Figure 1) where the magnitude increases linearly (e.g., 1, 2, 3, …) whereas the frequency decreases as an inverse power function (e.g., 1/3, 1/9, 1/81) with increasing magnitude (Keller et al., 2008, p. 23). In other words, the larger and the more energetic the event, the rarer it is in time.

Frequency and Magnitude of Events, Figure 1
figure 621 figure 621

A log-normal frequency plot showing variation between maximum instantaneous stream discharge and flow recurrence in years for the Skagit River at...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Baker, V. R., 1994. Geomorphological understanding of floods. Geomoprphology, 10, 139–156.

    Article  Google Scholar 

  • Baker, V. R., 2008. Paleoflood hydrology: origin, progress, prospects. Geomorphology, 101, 1–13.

    Article  Google Scholar 

  • Brown, W. M. III, and Ritter, J. R., 1971. Sediment transport and turbidity in the Eel River basin, California. United States Geological Survey, Water Supply Paper 1986, 71p.

    Google Scholar 

  • Cruden, D. M., and Varnes, D. J., 1996. Landslide types and processes. In Turner, K., and Schuster, R. L. (eds.), Landslides investigation and mitigation. Transportation Research Board Special Report, 247, Washington, DC: National Academy Press, pp. 36–75.

    Google Scholar 

  • Evans, S. G., and Clague, J. J., 1994. Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology, 10, 107–108.

    Article  Google Scholar 

  • Fell, R., Ho, K. K. S., Lacasse, S., and Leroi, E., 2005. A framework for landslide risk management. In Hungr, O., Fell, R., Couture, R., and Eberhardt, E. (eds.), Landslide Risk Management. Leiden: A.A. Balkema, pp. 3–26.

    Google Scholar 

  • García-Matinez, R., and López, J. L., 2005. Debris flows of December 1999 in Venezuela. In Jakob, M., and Hungr, O. (eds.), Debris Flow Hazards and Related Phenomena. Chichester: Springer-Praxis, pp. 411–443.

    Google Scholar 

  • Guthrie, R. H., and Evans, S. G., 2005. The role of magnitude-frequency relations in regional landslide risk analysis. In Hungr, O., Fell, R., Couture, R., and Eberhardt, E. (eds.), Landslide Risk Management. Leiden: A.A. Balkema, pp. 375–380.

    Google Scholar 

  • Hanks, T. C., and Kanamori, H., 1979. Moment magnitude scale. Journal of Geophysical Research, 84(B5), 2348–2350.

    Article  Google Scholar 

  • Helly, E. C., and LaMarche, V. C., Jr., 1968. December 1964, a 400 year flood in northern California. United States Geological Survey, Professional Paper 600-D, pp. D34–D37.

    Google Scholar 

  • Hungr, O., Evans, S. G., Bovis, M. J., and Hutchinson, J. N., 2001. A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7, 221–238.

    Article  Google Scholar 

  • Jackson, L. E., Jr., 2002. Regional landslide activity and Quaternary landscape evolution, Rocky Mountain Foothills, Alberta, Canada. In Evans, S. G., and DeGraff, J. V. (eds.), Catastrophic Landslides; Effects, Occurrence, and Mechanisms. Boulder, CO: Geological Society of America. Reviews in Engineering Geology, Vol. XV, pp. 325–344.

    Chapter  Google Scholar 

  • Jackson, L. E., Jr., MacDonald, G. M., and Wilson, M. C., 1982. Paraglacial origin for terrace river sediments in Bow Valley, Alberta. Canadian Journal of Earth Sciences, 19, 2219–2231.

    Article  Google Scholar 

  • Jackson, L. E., Jr., Hungr, O., Gardner, J. S., and Mackay, C., 1989. Cathedral mountain debris flows, Canada. Bulletin of the International Association for Engineering Geology and the Environment, 40, 35–54.

    Article  Google Scholar 

  • Jakob, M., 2005. Debris-flow hazard and analysis. In Jakob, M., and Hungr, O. (eds.), Debris Flow Hazards and Related Phenomena. Chichester: Springer-Praxis, pp. 411–443.

    Chapter  Google Scholar 

  • Keller, E. A., Blodgett, R. H., and Clague, J. J., 2008. Natural Hazards: Earth’s Processes as Hazards, Disasters, and Catastrophes. Toronto: Pearson-Prentice Hall. 421p.

    Google Scholar 

  • Mann, M. E., Bradley, R. S., and Hughes, M. K., 1999. Northern hemisphere temperatures during the past millennium. Geophysical Research Letters, 26, 759–762.

    Article  Google Scholar 

  • Nadim, F., and Locat, J., 2005. Risk assessment for submarine slides. In Hungr, O., Fell, R., Couture, R., and Eberhardt, E. (eds.), Landslide Risk Management. Leiden: A.A. Balkema, pp. 321–333.

    Google Scholar 

  • Newhall, C. G., and Self, S., 1982. The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 87(C2), 1231–1238.

    Article  Google Scholar 

  • Picarelli, L., Oboni, F., Evans, S. G., Mostyn, G., and Fell, R., 2005. Hazard classification and quantification. In Hungr, O., Fell, R., Couture, R., and Eberhardt, E. (eds.), Landslide Risk Management. Leiden: A.A. Balkema, pp. 27–61.

    Google Scholar 

  • Stewart, J. E., and Bodhaine, G. L., 1961. Floods in the Skagit River basin. United States Geological Survey, Water Supply Paper 1527, 57p.

    Google Scholar 

  • Vallance, J. W., 2005. Volcanic debris flows. In Jakob, M., and Hungr, O. (eds.), Debris Flow Hazards and Related Phenomena. Heidelberg: Springer, pp. 247–254.

    Chapter  Google Scholar 

  • Wells, D. L., and Coppersmith, K. J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bulletin of the Seismological Society of America, 84, 974–1002.

    Google Scholar 

  • Wolman, M. G., and Miller, J. P., 1960. Magnitude and frequency of forces in geomorphic processes. Journal of Geology, 68, 54–74.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel E. Jackson Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Jackson, L.E. (2013). Frequency and Magnitude of Events. In: Bobrowsky, P.T. (eds) Encyclopedia of Natural Hazards. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4399-4_147

Download citation

Publish with us

Policies and ethics