Skip to main content

El Niño/Southern Oscillation

  • Reference work entry
  • First Online:
Encyclopedia of Natural Hazards

Part of the book series: Encyclopedia of Earth Sciences Series ((EESS))

Synonyms

El Niño; Southern oscillation; Tropical pacific warming

Definitions

Easterlies. Low-latitude trade winds that blow from east to west and extend from the Galapagos Islands to Indonesia.

Kelvin wave. A nondispersive subsurface oceanic wave, several centimeters high and hundreds of kilometers wide, that balances the Earth’s Coriolis force against the equator.

El Niño. A recurrent increase of the ocean surface temperature across much of the tropical eastern and central Pacific; the term was introduced by Peruvian fishermen.

La Niña. The opposite to El Niño – cooling of the ocean surface temperature across much of the tropical eastern and central Pacific.

Rossby wave. A planetary-scale wave caused by the variation in the Coriolis force with latitude, discovered by Carl-Gustaf Rossby in 1939.

Southern oscillation. Coupled changes in surface air pressure between the eastern and western Pacific associated with El Niño and La Niña events; the term was introduced by Sir Gilbert Walker...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Bibliography

  • Allen, M. R., and Robertson, A. W., 1996. Distinguishing modulated oscillations from coloured noise in multivariate datasets. Climate Dynamics, 12, 775.

    Article  Google Scholar 

  • Barnett, T. P., Latif, M., Graham, N., Flügel, M., Pazan, S., and White, W., 1993. ENSO and ENSO-related predictability. Part I: Prediction of equatorial Pacific sea surface temperature with a hybrid coupled ocean-atmosphere model. Journal of Climate, 6, 1545–1566.

    Article  Google Scholar 

  • Barnston, A., van den Dool, H., Zebiak, S., et al., 1994. Long-lead seasonal forecasts – Where do we stand? Bulletin of the American Meteorological Society, 75, 2097.

    Article  Google Scholar 

  • Barnston, A. G., and Ropelewski, C. F., 1992. Prediction of NESO episodes using canonical correlation analysis. Journal of Climate, 5, 1316.

    Article  Google Scholar 

  • Battisti, D. S., 1988. The dynamics and thermodynamics of a warming event in a coupled tropical atmosphere/ocean model. Journal of the Atmospheric Sciences, 45, 2889.

    Article  Google Scholar 

  • Battisti, D. S., and Hirst, A. C., 1989. Interannual variability in a tropical atmosphere-ocean model – influence of the basic state, ocean geometry and nonlinearity. Journal of the Atmospheric Sciences, 46, 12, 1687.

    Article  Google Scholar 

  • Bjerknes, J., 1969. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 97, 163.

    Article  Google Scholar 

  • Boulanger, J. P., Menkes, C., and Lengaigne, M., 2004. Role of high- and low-frequency winds and wave reflection in the onset, growth and termination of the 1997-1998 El Nino. Climate Dynamics, 22, 267.

    Article  Google Scholar 

  • Cane, M., and Zebiak, S. E., 1985. A theory for El Niño and the Southern Oscillation. Science, 228, 1084.

    Article  Google Scholar 

  • Chang, P., Wang, B., Li, T., and Ji, L., 1994. Interactions between the seasonal cycle and the Southern Oscillation: frequency entrainment and chaos in intermediate coupled ocean-atmosphere model. Geophysical Research Letters, 21, 2817.

    Article  Google Scholar 

  • Chen, F., and Ghil, M., 1996. Interdecadal variability in a hybrid coupled ocean-atmosphere model. Journal of Physical Oceanography, 26, 1561.

    Article  Google Scholar 

  • Diaz, H. F., and Markgraf, V. (eds.), 1993. El Niño: Historical and Paleoclimatic Aspects of the Southern Oscillation. New York: Cambridge University Press.

    Google Scholar 

  • Dijkstra, H. A., 2005. Nonlinear Physical Oceanography: A Dynamical Systems Approach to the Large Scale Ocean Circulation and El Niño, 2nd edn. New York: Springer.

    Google Scholar 

  • Dijkstra, H. A., and Ghil, M., 2005. Low-frequency variability of the ocean circulation: a dynamical systems approach. Reviews of Geophysics, 43, RG3002.

    Article  Google Scholar 

  • Ghil, M., 2002. Natural climate variability. In Munn, T. (ed.), Encyclopedia of Global Environmental Change. Chichester/New York: Wiley, Vol. 1, pp. 544–549.

    Google Scholar 

  • Ghil, M., and Jiang, N., 1998. Recent forecast skill for the El Niño/Southern Oscillation. Geophysical Research Letters, 25, 171.

    Article  Google Scholar 

  • Ghil, M., Allen, M. R., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., Robertson, A. W., Saunders, A., Tian, Y., Varadi, F., and Yiou, P., 2002. Advanced spectral methods for climatic time series. Reviews of Geophysics, 40, 1003.

    Article  Google Scholar 

  • Ghil, M., Chekroun, M. D., and Simonnet, E., 2008a. Climate dynamics and fluid mechanics: natural variability and related uncertainties. Physica D, 237, 2111.

    Article  Google Scholar 

  • Ghil, M., and Robertson, A. W., 2000. Solving problems with GCMs: general circulation models and their role in the climate modeling hierarchy. In Randall, D. (ed.), General Circulation Model Development: Past Present and Future. San Diego: Academic, pp. 285–325.

    Google Scholar 

  • Ghil, M., Zaliapin, I., and Coluzzi, B., 2008b. Boolean delay equations: a simple way of looking at complex systems. Physica D, 237, 2967.

    Article  Google Scholar 

  • Glantz, M. H., Katz, R. W., and Nicholls, N. (eds.), 1991. Teleconnections Linking Worldwide Climate Anomalies. New York: Cambridge University Press.

    Google Scholar 

  • IRI: The International Research Institute for Climate and Society, 2010. Resources on El Niño and La Niña, http://iri.columbia.edu/climate/ENSO/.

  • Ji, M., Behringer, D. W., and Leetmaa, A., 1998. An improved coupled model for ENSO prediction and implications for ocean initialization, Part II: the coupled model. Monthly Weather Review, 126, 1022.

    Article  Google Scholar 

  • Jiang, N., Ghil, M., and Neelin, J. D., 1995a. Forecasts of equatorial Pacific SST anomalies by an autoregressive process using similar spectrum analysis. Experimental Long-Lead Forecast Bulletin (ELLFB), 4, 24. National Meteorological Center, NOAA, U.S. Department of Commerce.

    Google Scholar 

  • Jiang, S., Jin, F.-F., and Ghil, M., 1995b. Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, doublee-gyre, shallow-water model. Journal of Physical Oceanography, 25, 764.

    Article  Google Scholar 

  • Jiang, N., Neelin, J. D., and Ghil, M., 1995c. Quasi-quadrennial and quasi-biennial variability in the equatorial Pacific. Climate Dynamics, 12, 101.

    Article  Google Scholar 

  • Jin, F.-F., and Neelin, J. D., 1993. Modes of interannual tropical ocean-atmosphere interaction – a unified view. Part III: analytical results in fully-coupled cases. Journal of the Atmospheric Sciences, 50, 3523.

    Article  Google Scholar 

  • Jin, F-f, Neelin, J. D., and Ghil, M., 1994. El Niño on the Devil’s Staircase: Annual subharmonic steps to chaos. Science, 264, 70.

    Article  Google Scholar 

  • Kadanoff, L. P., 1983. Roads to chaos. Physics Today, 12, 46.

    Article  Google Scholar 

  • Landsea, C. W., 2000. El Niño/Southern Oscillation and the seasonal predictability of tropical cyclones. In Diaz, H. F., and Markgraf, V. (eds.), El Niño and the Southern Oscillation: Multiscale Variability and Global and Regional Impacts. Cambridge: Cambridge University Press, pp. 149–181.

    Google Scholar 

  • Latif, M., Barnett, T. P., Flügel, M., Graham, N. E., Xu, J.-S., and Zebiak, S. E., 1994. A review of ENSO prediction studies. Climate Dynamics, 9, 167.

    Article  Google Scholar 

  • Lengaigne, M., Guilyardi, E., Boulanger, J. P., et al., 2004. Triggering of El Nino by westerly wind events in a coupled general circulation model. Climate Dynamics, 23, 601.

    Article  Google Scholar 

  • Madden, R. A., and Julian, P. R., 1994. Observations of the 40–50-day tropical oscillation – a review. Monthly Weather Review, 122, 814.

    Article  Google Scholar 

  • Mechoso, C. R., Yu, J.-Y., and Arakawa, A., 2000. A coupled GCM pilgrimage: from climate catastrophe to ENSO simulations. In Randall, D. A. (ed.), General Circulation Model Development: Past, Present and Future: Proceedings of a Symposium in Honor of Professor Akio Arakawa. New York: Academic Press, p. 539.

    Google Scholar 

  • McPhaden, M. J., Busalacchi, A. J., Cheney, R., Donguy, J. R., Gage, K. S., Halpern, D., Ji, M., Julian, P., Meyers, G., Mitchum, G. T., Niiler, P. P., Picaut, J., Reynolds, R. W., Smith, N., and Takeuchi, K., 1998. The tropical ocean-global atmosphere observing system: a decade of progress. Journal of Geophysical Research, 103, 14169.

    Article  Google Scholar 

  • McWilliams, J. C., 1996. Modeling the oceanic general circulation. Annual Review of Fluid Mechanics, 28, 215.

    Article  Google Scholar 

  • Miller, A. J., et al., 1994. The 1976-77 climate shift of the Pacific Ocean. Oceanography, 7, 21.

    Article  Google Scholar 

  • Mitchell, J. M., Jr., 1976. An overview of climatic variability and its causal mechanisms. Quaternary Research, 6, 481.

    Article  Google Scholar 

  • Munnich, M., Cane, M., and Zebiak, S. E., 1991. A study of self-excited oscillations of the tropical ocean-atmosphere system Part II: nonlinear cases. Journal of the Atmospheric Sciences, 48, 1238.

    Article  Google Scholar 

  • Neelin, J. D., 1990. A hybrid coupled general circulation model for El Niño studies. Journal of the Atmospheric Sciences, 47, 674.

    Article  Google Scholar 

  • Neelin, J. D., Latif, M., Allaart, M. A. F., Cane, M. A., Cubasch, U., Gates, W. L., Gent, P. R., Ghil, M., Gordon, C., Lau, N. C., Mechoso, C. R., Meehl, G. A., Oberhuber, J. M., Philander, S. G. H., Schopf, P. S., Sperber, K. R., Sterl, A., Tokioka, T., Tribbia, J., and Zebiak, S. E., 1992. Tropical air-sea interaction in general circulation models. Climate Dynamics, 7, 73.

    Article  Google Scholar 

  • Neelin, J. D., Latif, M., and Jin, F.-F., 1994. Dynamics of coupled ocean-atmosphere models: the tropical problem. Annual Review of Fluid Mechanics, 26, 617.

    Article  Google Scholar 

  • Neelin, J. D., Battisti, D. S., Hirst, A. C., Jin, F.-F., Wakata, Y., Yamagata, T., and Zebiak, S., 1998. ENSO theory. Journal of Geophysical Research, 103, 14261.

    Article  Google Scholar 

  • New, M. G., and Jones, P. D., 2000. Representing twentieth-century space-time climate variability Part II: development of a 1901-96 mean monthly grid of terrestrial surface climate. Journal of Climate, 13, 2217.

    Article  Google Scholar 

  • Pfeffer, R. L. (ed.), 1960. Dynamics of Climate. New York: Pergamon Press.

    Google Scholar 

  • Philander, S. G. H., 1990. El Niño, La Niña, and the Southern Oscillation. San Diego: Academic.

    Google Scholar 

  • Rasband, S. N., 1990. Chaotic Dynamics of Nonlinear Systems. New York: Wiley.

    Google Scholar 

  • Rasmusson, E. M., Wang, X., and Ropelewski, C. F., 1990. The biennial component of ENSO variability. Journal of Marine Systems, 1, 71.

    Article  Google Scholar 

  • Robertson, A. W., Ma, C.-C., Ghil, M., and Mechoso, R. C., 1995. Simulation of the Tropical-Pacific climate with a coupled ocean-atmosphere general circulation model. Part II: interannual variability. Journal of Climate, 8, 1199.

    Article  Google Scholar 

  • Ropelewski, C. F., and Halpert, M. S., 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Monthly Weather Review, 115, 1606.

    Article  Google Scholar 

  • Schneider, S. H., and Dickinson, R. E., 1974. Climate modeling. Reviews of Geophysics and Space Physics, 25, 447.

    Article  Google Scholar 

  • Schopf, P. S., and Suarez, M. J., 1988. Vacillations in a coupled ocean-atmosphere model. Journal of the Atmospheric Sciences, 45, 549.

    Article  Google Scholar 

  • Suarez, M. J., and Schopf, P. S., 1988. A delayed action oscillator for ENSO. Journal of the Atmospheric Sciences, 45, 3283.

    Article  Google Scholar 

  • Trenberth, K. E., 1997. The definition of El Niño. Bulletin of the American Meteorological Society, 78, 277.

    Google Scholar 

  • Tziperman, E., Stone, L., Cane, M., and Jarosh, H., 1994. El Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science, 264, 272.

    Article  Google Scholar 

  • Van den Dool, H. M., 1994. Searching for analogues, how long must we wait? Tellus, 46A, 314.

    Article  Google Scholar 

  • Wang, X., Stone, P. H., and Marotzke, J., 1999. Global thermohaline circulation, Part II: sensitivity with interactive atmospheric transports. Journal of Climate, 12, 83.

    Article  Google Scholar 

  • Weng, W., and Neelin, J. D., 1998. On the role of ocean-atmosphere interaction in midlatitude interdecadal variability. Geophysical Research Letters, 25, 170.

    Article  Google Scholar 

  • Zaliapin, I., and Ghil, M., 2010. A delay differential model of ENSO variability, Part 2: phase locking, multiple solutions, and dynamics of extrema. Nonlinear Processes in Geophysics, 17, 123–135.

    Article  Google Scholar 

  • Zebiak, S. E., and Cane, M. A., 1987. A model for El Niño oscillation. Monthly Weather Review, 115, 2262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ghil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Ghil, M., Zaliapin, I. (2013). El Niño/Southern Oscillation. In: Bobrowsky, P.T. (eds) Encyclopedia of Natural Hazards. Encyclopedia of Earth Sciences Series. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-4399-4_112

Download citation

Publish with us

Policies and ethics