Skip to main content

Evaluation of photosynthetic capacity in micropropagated plants by image analysis

  • Chapter
  • First Online:
Plant Tissue Culture Engineering

Part of the book series: Focus on Biotechnology ((FOBI,volume 6))

  • 2089 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kubota, C. (2001) Concepts and background of photoautotrophic micropropagation. In: Morohoshi, N. and Komamine, A. (Eds.) Molecular Breeding of Woody Plants. Elsevier Science B.V., Amsterdam; pp. 325-334.

    Google Scholar 

  2. Dubé, S.L. and Vidaver, W. (1992) Photosynthetic competence of plantlets grown in vitro. An automated system for measurement of photosynthesisin vitro. Physiol. Plant 84: 409-416.

    Article  Google Scholar 

  3. Kubota, C. and Kozai, T. (1992) Growth and net photosynthetic rate of Solanum tuberosum in vitrounder forced and natural ventilation. Hort. Sci. 27: 1312-1314.

    Article  Google Scholar 

  4. Capellades, M.; Lemeur, R. and Debergh, P. (1990) Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tissue Org. Cult. 25: 21-26.

    Article  Google Scholar 

  5. Desjardins, Y.; Hdider, C. and de Riek, J. (1995) Carbon nutrition in vitro – regulation and manipulation of carbon assimilation in micropropagated systems. In: Aitken-Christie, J.; Kozai, T. And Smith, M.A.L. (Eds.) Automation and Environmental Control in Plant Tissue Cultures. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 441-471.

    Chapter  Google Scholar 

  6. Ibaraki, Y. and Nozaki, Y. (2004) Estimation of light intensity distribution in a culture vessel. Plant Cell Tissue Org. Cult. (in press).

    Google Scholar 

  7. Oxborough, K. and Baker, N.R. (1997) Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components-calculation of qp and Fv’/Fm’ without measuring Fo’. Photosynth. Res. 54: 135-142.

    Article  CAS  Google Scholar 

  8. Jones, H.G. (1990) Plants and microclimate. Cambridge University Press, New York.

    Google Scholar 

  9. Lichtenthaler, H.K.; Lang, M.; Sowinska, M.; Heisel, F. and Miehe, J.A. (1996) Detection of vegetation stress via a new high resolution fluorescence imaging system. J. Plant Physiol. 148: 599-612.

    Article  CAS  Google Scholar 

  10. Lichtenthaler, H.K.; Buschman, C.; Rinderle, U. and Schmuck, G. (1986) Application of chlorophyll fluorescence in eco-physiology. Radiat. Environ. Biophy. 25: 297.

    Article  CAS  Google Scholar 

  11. Morecroft, M.D.; Stokes, V.J. and Morison, J.I.L. (2003) Seasonal changes in the photosynthetic capacity of canopy oak (Quercus robur) leaves: the impact of slow development on annual carbon uptake. Int. J. Biometeorol. 47: 221-226.

    Article  CAS  Google Scholar 

  12. Fracheboud, Y.; Haldimann, P.; Leipner, J. and Stamp, P. (1999) Chlorophyll fluorescence as a selection tool for cold tolerance of photosynthesis in maize (Zea maysL.). J. Exp. Bot. 50: 1533-1540.

    Article  CAS  Google Scholar 

  13. Genty, B.; Briantais, J.M. and Baker, N.R. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochemica Biophysica Acta 990: 87-92.

    Article  CAS  Google Scholar 

  14. Maxwell, K. and Johnson, G.N. (2000) Chlorophyll fluorescence – a practical guide. J. Exp. Bot. 51: 659-668.

    Article  CAS  Google Scholar 

  15. Lichtenthaler, H.K. and Rinderle, U. (1988) The role of chlorophyll fluorescence in the detection of stress conditions in plants. CRC Critical Reviews in Analytical Chemistry 19: S29-S85.

    Article  Google Scholar 

  16. Aitken-Christie, J.; Davies, H.E.; Kubota, C. and Fujiwara, K. (1992) Effect of nutrient media composition on sugar-free growth and chlorophyll fluorescence of Pinus radiata shoots in vitro. Acta Hort. 319: 125-128.

    Article  Google Scholar 

  17. Hofman, P.; Haisel, D.; Komenda, J.; Vágner, M.; Tichá, I.; Schäfer, C. and Čapková, V. (2002) Impact of in vitro cultivation conditions on stress responses and on changes in thylakoid membrane proteins and pigments of tobacco during ex vitro acclimation. Biol. Plant. 45: 189-195.

    Article  CAS  Google Scholar 

  18. Serret, M.D.; Trillas, M.I. and Araus, J.L. (2001) The effect of in vitro culture conditions on the pattern of photoinhibition during acclimation of gardenia plantlets to ex vitro conditions. Photosynthetica 39: 67-73.

    Article  CAS  Google Scholar 

  19. Kato, M.C.; Hikosaka, K. and Hirose, T. (2002) Leaf discs floated on water are different from intact leaves in photosynthesis and photoinhibition. Photosynth. Res. 72: 65-70.

    Article  CAS  Google Scholar 

  20. Ibaraki, Y and Matsumura, K (2004) Non-destructive evaluation of the photosynthetic capacity of PSII in micropropagated plants. J. Agric. Meteorol. 60 (in press).

    Google Scholar 

  21. Murashige, T. and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15: 473-497.

    Article  CAS  Google Scholar 

  22. Omasa, K.; Shimazaki, K.I.; Aiga, I.; Larcher, W. and Onoe, M. (1987) Image analysis of chlorophyll fluorescence transients for diagnosing the photosynthetic system of attached leaves. Plant Physiol. 84: 748-752.

    Article  CAS  Google Scholar 

  23. Omasa, K. (1996) Image diagnosis of photosynthesis in cultured tissues. Acta Hort. 319: 653-658.

    Google Scholar 

  24. Genty, B. and Meyer, S. (1994) Quantitative mapping of leaf photosynthesis using chlorophyll fluorescence imaging. Aust. J. Plant Physiol. 22: 277-284.

    Google Scholar 

  25. Siebke, K. and Weis, E. (1995) Imaging of chlorophyll-a-fluorescence in leaves: Topography of photosynthetic oscillations in leaves of Glechoma hederacea. Photosynth. Res. 45: 225-237.

    Article  CAS  Google Scholar 

  26. Meng, Q.; Siebke, K.; Lippert, P.; Baur, B.; Mukherjee, U. and Weis, E. (2001) Sink-source transition in tabacco leaves visualized using chlorophyll fluorescence imaging. New Phytologist 151: 585-595.

    Article  CAS  Google Scholar 

  27. Oxborough, K. and Baker, N.R. (1997) An instrument capable of imaging chlorophyll a fluorescence intact leaves at very low irradiance and at cellular and subcellular levels of organization. Plant Cell Environ. 20: 1473-1483.

    Article  Google Scholar 

  28. Ibaraki, Y.; Iwabuchi, K. and Okada, M. (2004) Chlorophyll fluorescence analysis for rice leaves grown under elevated CO 2 conditions. J. Agric. Meteorol. 60 (in press).

    Google Scholar 

  29. Gitelson, A.A. (2004) Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 161: 165-173.

    Article  CAS  Google Scholar 

  30. Chappelle, E.W.; Kim, M.S. and Mcmurtrey, J.E. (1992) Ratio analysis of reflectance spectra (RARS): an algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves. Remote Sens. Environ. 39: 239-247.

    Article  Google Scholar 

  31. Carter, G.A.; Rebbeck, J. and Percy, K.E. (1995) Leaf optical properties in Liriodendron tulipifera and Pinus strobus as influenced by increased atmospheric ozone and carbon dioxide. Can. J. For. Res. 25: 407-412.

    Article  CAS  Google Scholar 

  32. Gamon, J.A.; Serrano, L. and Surfus, J.S. (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112: 492-501.

    Article  CAS  Google Scholar 

  33. Yamamoto, H.Y. (1979) Biochemistry of violaxanthin cycle in higher plant. Pure Appl. Chem. 51: 639 648.

    Article  CAS  Google Scholar 

  34. Stylinski, C.D.; Gamon, J.A. and Oechel, W.C. (2002) Seasonal patterns of reflectance indices, carotenoid pigments and photosynthesis of evergreen chaparral species. Oecologia 131: 366-374.

    Article  CAS  Google Scholar 

  35. Carter, G.A.; Cibula, W.G. and Miller, R.L. (1996) Narrow-band reflectance imagery compared with thermal imagery for early detection of plant stress. J. Plant. Physiol. 148: 515-522.

    Article  CAS  Google Scholar 

  36. Kozai, T.; Oki, H. and Fujiwara, K. (1990) Photosynthetic characteristics of Cymbidium plantlet in vitro. Plant Cell Tissue Org. Cult. 22: 205-211.

    Article  Google Scholar 

  37. Fujiwara, K. and Kozai, T. (1995) Physical microenvironment and its effects. In: Aitken-Christie, J.; Kozai, T. and Smith, M.A.L. (Eds.) Automation and Environmental Control in Plant Tissue Cultures. Kluwer Academic Publishers, Dordrecht, The Netherlands; pp. 319-369.

    Chapter  Google Scholar 

  38. Fujiwara, K.; Kozai, T.; Nakajo, Y. and Watanabe, I. (1989) Effects of closures and vessels on light intensities in plant tissue culture vessels. J. Agric. Meteorol. 45: 143-149 (in Japanese with English abstract).

    Article  Google Scholar 

  39. Watanabe, S.; Nakano, Y. and Okano, K. (2001) Simple measurement of light-interception by individual leaves in fruit vegetables by using an integrated solarimeter film. (Japanese text with English summary) Environ. Control Biol. 39: 121-125.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Ibaraki, Y. (2008). Evaluation of photosynthetic capacity in micropropagated plants by image analysis. In: Gupta, S.D., Ibaraki, Y. (eds) Plant Tissue Culture Engineering. Focus on Biotechnology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3694-1_1

Download citation

Publish with us

Policies and ethics