Skip to main content

The Bond Fluctuation Model and Other Lattice Models

  • Chapter
Handbook of Materials Modeling

Abstract

Lattice models constitute a class of coarse-grained representations of polymeric materials. They have enjoyed a longstanding tradition for investigating the universal behavior of long chain molecules by computer simulations and enumeration techniques. A coarse-grained representation is often necessary to investigate properties on large time- and length scales. First, some justification for using lattice models will be given and the benefits and limitations will be discussed. Then, the bond fluctuation model by Carmesin and Kremer [1] is placed into the context of other lattice models and compared to continuum models. Some specific techniques for measuring the pressure in lattice models will be described. The bond fluctuation model has been employed in more than 100 simulation studies in the last decade and only few selected applications can be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 709.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. Carmesin and K. Kremer, “The bond fluctuation method — a new effective algorithm for the dynamics of polymers in all spatial dimensions”, Macromolecules, 21, 2819–2823, 1988.

    Article  ADS  Google Scholar 

  2. J. Baschnagel, K. Binder, P. Doruker, A.A. Gusev, O. Hahn, K. Kremer, W.L. Mattice, F. Müller-Plathe, M. Murat, W. Paul, S. Santos, U.W. Suter, and V. Tries “Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives”, Adv. Polym. Sci., 152, 41–156, 2000.

    Article  Google Scholar 

  3. M. Müller, “Mesoscopic and continuum models. In: J.H. Moore and J.H. Spencer (eds.), Encyclopedia of Physical Chemistry and Chemical Physics, vol II, IOP, Bristol, pp. 2087–2110, 2001.

    Google Scholar 

  4. M. Müller, K. Katsov, and M. Schick, “Coarse grained models and collective phenomena in membranes: computer simulation of membrane fusion”, J. Polym. Sci. B, Polym.Phys., 41, 1441–1450, 2003 (highlight article).

    Article  ADS  Google Scholar 

  5. P.G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979.

    Google Scholar 

  6. K. Kremer and K. Binder, “Monte Carlo simulations of lattice models for macromolecules”, Comput. Phys. Rep., 7, 259–310, 1988.

    Article  ADS  Google Scholar 

  7. J.J. de Pablo and RA. Escobedo, “Monte Carlo methods for polymeric systems”, Adv. Chem. Phys., 105, 337–367, 1999.

    Article  Google Scholar 

  8. N. Madras and A.D. Sokal, “The pivot algorithm — a highly efficient Monte Carlo method for the self-avoiding walk”, J. Stat. Phys., 50, 109–186, 1988.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. A.D. Sokal, “Monte Carlo methods for the self-avoiding walk”, In: K. Binder (ed.), Monte Carlo and Molecular Dynamics Simulations in Polymer Science, Oxford University Press, New York, p. 47, 1995.

    Google Scholar 

  10. J.I. Siepmann and D. Frenkel, “Configurational bias Monte Carlo — a new sampling scheme for flexible chains”, Mol. Phys., 75, 59–70, 1992.

    Article  ADS  Google Scholar 

  11. D. Frenkel and B. Smit, “Understanding molecular simulations: from algorithms to applications”, 2nd edn., Academic Press, Boston, 2001.

    Google Scholar 

  12. R. Dickman, “New simulation method for the equation of state of lattice chains”, J. Chem. Phys., 87, 2246–2248, 1987.

    Article  ADS  Google Scholar 

  13. M.R. Stukan, V.A. Ivanov, M. Müller, W. Paul, and K. Binder, “Finite size effects in pressure measurements for Monte Carlo simulations of lattice polymer systems”, J. Chem. Phys., 117, 9934–9941, 2002.

    Article  ADS  Google Scholar 

  14. A.D. Mackie, A.Z. Panagiotopoulos, D. Frenkel, and S.K. Kumar, “Constantpressure Monte Carlo simulations for lattice models”, Europhys. Lett., 27, 549–544, 1994.

    Article  ADS  Google Scholar 

  15. A. Poncela, A.M. Rubio, and JJ. Freire, “Gibbs ensemble simulations of a symmetric mixtures composed of the homopolymers AA and BB and their symmetric diblock copolymer”, J. Chem. Phys., 118, 425–133, 2003.

    Article  ADS  Google Scholar 

  16. J.S. Shaffer, “Effects of chain topology on polymer dynamics: bulk melts”, J. Chem. Phys., 101, 4205–1213, 1994.

    Article  ADS  Google Scholar 

  17. H.-P. Deutsch and K. Binder, “Interdiffusion and self-diffusion in polymer mixtures: a Monte Carlo study”, J. Chem. Phys., 94, 2294–2304, 1991.

    Article  ADS  Google Scholar 

  18. W. Paul, K. Binder, D.W. Heermann, and K. Kremer, “Crossover scaling in semidilute polymer solutions: a Monte Carlo test”, J. Phys. II, 1, 37–60, 1991.

    Article  Google Scholar 

  19. W. Paul, K. Binder, D.W. Heermann, and K. Kremer, “Dynamics of polymer solutions and melts — reptation predictions and scaling of relaxation times”, J. Chem. Phys., 95, 7726–7740, 1991.

    Article  ADS  Google Scholar 

  20. M. Müller, J.P. Wittmer, and M.E. Cates, “Topological effects in ring polymers: a computer simulation study”, Phys. Rev. E, 53, 5063–5074, 1996.

    Article  ADS  Google Scholar 

  21. J.U. Sommer and S. Lay, “Topological structure and nonaffine swelling of bimodal polymer networks”, Macromolecules, 25, 9832–9843, 2002.

    Article  ADS  Google Scholar 

  22. Z. Chen, C. Cohen, and F.A. Escobedo, “Monte Carlo simulation of the effect of entanglements on the swelling and deformation behavior of end-linked polymeric networks”, Macromolecules, 25, 3296–3305, 2002.

    Article  ADS  Google Scholar 

  23. J. Wittmer, A. Johner, J.F. Joanny, and K. Binder, “Chain desorption from a semidilute polymer brush — a Monte Carlo simulation”, J. Chem. Phys., 101, 4379–4390, 1994.

    Article  ADS  Google Scholar 

  24. P.Y. Lai and K. Binder, “Structure and dynamics of grafted polymer layers: a Monte Carlo simulation”, J. Chem. Phys., 95, 9288–9299, 1991.

    Article  ADS  Google Scholar 

  25. J.P. Wittmer, A. Milchev, and M.E. Cates, “Dynamical Monte Carlo study of equilibrium polymers: static properties”, J. Chem. Phys., 109, 834–845, 1998.

    Article  ADS  Google Scholar 

  26. N.B. Wilding, M. Müller, and K. Binder, “Chain length dependence of the polymersolvent critical point parameters”, J. Chem. Phys., 105, 802–809, 1996.

    Article  ADS  Google Scholar 

  27. J. Baschnagel, “Analysis of the incoherent intermediate scattering function in the framework of the idealized mode-coupling theory — a Monte Carlo study for polymer melts”, Phys. Rev. B, 49, 135–146, 1994.

    Article  ADS  Google Scholar 

  28. J. Baschnagel and K. Binder, “On the influence of hard walls on the structuralproperties in polymer glass simulation”, Macromolecules, 28, 6808–6818, 1995.

    Article  ADS  Google Scholar 

  29. M. Müller, “Miscibility behavior and single chain properties in polymer blends: a bond fluctuation model study”, Macromolecules Theory Simul, 8, 343–374, 1999 (feature article).

    Article  Google Scholar 

  30. E. Reister, M. Müller, and K. Binder, “Spinodal decomposition in a binary polymer mixture: dynamic self-consistent field theory and Monte Carlo simulations”, Phys. Rev. E, 64,041804/1–17, 2001.

    Google Scholar 

  31. K. Binder and M. Müller, “Monte Carlo simulation of block copolymers”, Curr. Opin. Colloid Interface Sci., 5, 315–323, 2001.

    Google Scholar 

  32. M. Müller, “Reactions at polymer interfaces: a Monte Carlo simulation”, Macromolecules 30, 6353–6357, 1997.

    Article  ADS  Google Scholar 

  33. G. Szamel and M. Müller, “Thin films of asymmetric triblock copolymers: a Monte Carlo study”, J. Chem. Phys., 118, 905–913, 2003.

    Article  ADS  Google Scholar 

  34. A. Werner, F. Schmid, M. Müller, and K. Binder, “Intrinsic profiles and capillary waves at homopolymer interfaces: a Monte Carlo study”, Phys. Rev. E, 59, 728–738, 1999.

    Article  ADS  Google Scholar 

  35. M. Müller and K. Binder, “Wetting and capillary condensation in symmetric polymer blends: a comparison between Monte Carlo simulations and self-consistent field calculations”, Macromolecules, 31, 8323–8346, 1998.

    Article  ADS  Google Scholar 

  36. M. Müller and K. Binder, “Interface localization-delocalization transition in a symmetric polymer blend: a finite size scaling Monte Carlo study”, Phys. Rev. E, 63,021602/1–16, 2001.

    Google Scholar 

  37. M. Müller and M. Schick, “Bulk and interfacial thermodynamics of a symmetric, ternary homopolymer-copolymer mixture: a Monte Carlo study”, J. Chem. Phys., 105, 8885–8901, 1996.

    Article  ADS  Google Scholar 

  38. J. Houdayer and M. Müller, “Deviations from the mean field predictions for the phase behavior of random copolymers”, Europhys. Lett., 58, 660–665, 2002.

    Article  ADS  Google Scholar 

  39. A. Cavallo, M. Müller, and K. Binder, “Anomalous scaling of the critical temperature of unmixing with chain length for two-dimensional polymer blends”, Europhys. Lett., 61, 214–220, 2003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Müller, M. (2005). The Bond Fluctuation Model and Other Lattice Models. In: Yip, S. (eds) Handbook of Materials Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-3286-8_138

Download citation

Publish with us

Policies and ethics