Skip to main content

The Uniqueness of Tetrahydrofolate Synthesis and One-Carbon Metabolism in Plants

  • Chapter
Book cover Plant Mitochondria: From Genome to Function

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 17))

Summary

In all living organisms a great variety of reactions involve transfer of single carbon units from one molecule to another. These one-carbon (C1) reactions play essential roles in major cellular processes including the synthesis of nucleic acids, protein biosynthesis in the organelles, amino acid metabolism, pantothenate biosynthesis, and the biogenesis of many methylated products. One-carbon transfer reactions are mediated by tetrahydrofolate, a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. C1 metabolism and tetrahydrofolate synthesis in plants exhibit features that are not found in other organisms. Beyond the unique gene organization and/or biochemical properties of some of these reactions, the most fascinating aspect is the complex subcellular compartmentation of folate synthesis and folate-mediated reactions in the plant cell. Thus, the enzymes involved in the biogenesis of tetrahydrofolate are distributed over the plastids, the cytosol, and the mitochondria. Also, these compartments contain parallel sets of activities required to generate C1-substituted folate coenzymes. This chapter will focus on the most recent advances in knowledge of C1 metabolism in plants with particular emphasize regardir the role of mitochondria and the traffic of folate coenzymes between the different compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

5:

FCL: 5-formyltetrahydro folate cycloligase

IO:

CHO-H4F: 10-formyltetrahydro folate

ADC:

aminodeoxychorismate

AdoMet:

S-adenosylmethionine

CH2 :

H4F: 5,10-methylenetetrahydro folate

CH3 :

H4F: 5 -methy ltetrahy drofolate

DHFR:

dihydrofolate reductase

DHFS:

dihydrofolate synthetase

DHNA:

dihydroneopterin aldolase

DHPS:

dihydropteroate synthase

dTMP:

deoxythymidine-monophosphate

FDH:

formate dehydrogenase

FPGS:

folylpolyglutamate synthetase

FTHFS:

10-formyltetrahydrofolate synthetase

GDC:

glycine decarboxylase complex

GTPCHI:

GTP-cyclohydrolase I

H4B:

tetrahydrobiopterin

H4F:

tetrahydrofolate

H4F:

Glu: folylpolyglutamate

HPPK:

hydroxymethyldihydropterin pyrophosphokinase

MTHFR:

methylenetetrahydrofolate reductase

p-ABA:

p-aminobenzoate

SHMT:

serine hydroxymethyltransferase

SMM:

S-methylmethionine

TS:

thymidylate synthase

References

  • Antony AC (1996) Folate receptors. Annu Rev Nutr 16: 501–521

    Article  PubMed  CAS  Google Scholar 

  • Appling DR (1991) Compartmentation of folate-mediated one-carbon metabolism in eukaryotes. FASEB J 5: 2645–2651

    PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Atkinson I J, Nargang FE and Cossins EA (1998) Folyl-polyglutamate synthesis in Neurospora crassa: primary structure of the folylpolyglutamate synthetase gene and elucidation of the met-6 mutation. Phytochemistry 49: 2221–2232

    Article  PubMed  CAS  Google Scholar 

  • Bailey LB and Gregory JF, III (1999) Folate metabolism and requirements. J Nutr 129: 779–782

    PubMed  CAS  Google Scholar 

  • Banerjee D, Mayer-Kuckuk P, Capiaux G, Budak-Alpdogan T, Gorlick R and Bertino JR (2002) Novel aspects of resistance to drugs targeted to dihydrofolate reductase and thymidylate synthase. Biochim Biophys Acta 1587: 164–173

    Article  PubMed  CAS  Google Scholar 

  • Basset G, Quinlivan EP, Ziemak MJ, Diaz De La Garza R, Fischer M, Schiffmann S, Bacher A, Gregory JF, III and Hanson AD (2002) Folate synthesis in plants: the first step of the pterin branch is mediated by a unique bimodular GTP cyclohydrolase I. Proc Natl Acad Sci USA 99: 12489–12494

    Article  PubMed  CAS  Google Scholar 

  • Basset GJC, Quinlivan EP, Ravanel S, Rebeille F, Nichols BP, Shinozaki K, Seki M, Adams-Phillips LC, Giovannoni JJ, Gregory JF, III and Hanson AD (2004). Folate synthesis in plants: the p-aminobenzoate branch is initiated by a Afunctional PabA-PabB protein that is targeted to plastids. Proc Natl Acad Sci USA 101: 1496–1501

    Article  PubMed  CAS  Google Scholar 

  • Besson V, Rebeille F, Neuburger M, Douce R and Cossins EA (1993). Effects of tetrahydrofolate polyglutamates on the kinetic parameters of serine hydroxymethyltransferase and glycine decarboxylase from pea leaf mitochondria. Biochem J 292: 425–430

    PubMed  CAS  Google Scholar 

  • Besson V, Neuburger M, Rebeille F and Douce R (1995) Evidence for three serine hydroxymethyltransferases in green leaf cells. Purification and characterization of the mitochondrial and chloroplastic isoforms. Plant Physiol Biochem 33: 665–673

    CAS  Google Scholar 

  • Blakley RL (1995) Eukaryotic dihydrofolate reductase. Adv Enzymol Relat Areas Mol Biol 70: 23–102

    PubMed  CAS  Google Scholar 

  • Bognar AL, Osborne C, Shane B, Singer SC and Ferone R (1985) Folylpoly-gamma-glutamate synthetase-dihydrofolate synthetase. Cloning and high expression of the Escherichia coli folC gene and purification and properties of the gene product. J Biol Chem 260: 5625–5630

    PubMed  CAS  Google Scholar 

  • Bourguignon J, Neuburger M and Douce R (1988) Resolution and characterization of the glycine-cleavage reaction in pea leaf mitochondria. Biochem J 255: 169–178

    PubMed  CAS  Google Scholar 

  • Bourguignon J, Rebeille F and Douce R (1999) Serine and glycine metabolism in higher plants. In: Singh B (ed) Plant Amino Acids, pp 111–146. Marcel Dekker, Inc., New York

    Google Scholar 

  • Cella R and Parisi B (1993) Dihydrofolate reductase and thymidylate synthase in plants: an open problem. Physiol Plant 88: 509–521

    Article  CAS  Google Scholar 

  • Chen L, Chan S and Cossins EA (1997) Distribution of folate derivatives and enzymes for synthesis of 10-formyltetrahy-drofolate in cytosolic and mitochondrial fractions of pea leaves. Plant Physiol 115: 299–309

    Article  PubMed  CAS  Google Scholar 

  • Cherest H, Thomas D and Surdin-Kerjan Y (2000) Polyglutamylation of folate coenzymes is necessary for methionine biosynthesis and maintenance of intact mitochondrial genome in Saccharomyces cerevisiae. J Biol Chem 275: 14056–14063

    Article  PubMed  CAS  Google Scholar 

  • Colas des Francs-Small C, Ambard-Breteville F, Small ID and Remy R (1993) Identification of a major soluble protein in mitochondria from nonphotosynthetic tissues as NAD-dependent formate dehydrogenase. Plant Physiol 102: 1171–1177

    Article  Google Scholar 

  • Cossins EA (1964) The utilization of carbon-1 compounds by plants. I. The metabolism of methanol-14C and its role in amino acid biosynthesis. Canad J Biochem 42: 1793–1802

    Article  CAS  Google Scholar 

  • Cossins EA (1984) Folates in biological materials. In: Blakley RL and Benkovic SJ (eds) Folates and Pterins, Vol 1, pp 1–59. Wiley (Interscience), New York

    Google Scholar 

  • Cossins EA (2000) The fascinating world of folate and one-carbon metabolism. Can J Bot 78: 691–708

    CAS  Google Scholar 

  • Cossins EA and Chen L (1997) Folates and one-carbon metabolism in plants and fungi. Phytochemistry 45: 437–152

    Article  PubMed  CAS  Google Scholar 

  • Dallas WS, Gowen J, Ray PH, Cox J and Dev IK (1992) Cloning, sequencing, and enhanced expression of the dihydropteroate synthase gene of Escherichia coli MC4100. JBacteriol 174:5961–5970

    CAS  Google Scholar 

  • DeSaizieu A, Vankan P and van Loon AP (1995) Enzymic characterization of Bacillus subtilis GTP cyclohydrolase I. Evidence for a chemical dephosphorylation of dihydro-neopterin triphosphate. Biochem J 306: 371–377

    PubMed  Google Scholar 

  • DeSouza L, Shen Y and Bognar AL (2000) Disruption of cytoplasmic and mitochondrial folylpolyglutamate synthetase activity in Saccharomyces cerevisiae. Arch Biochem Biophys 376:299–312

    Article  Google Scholar 

  • Douce R and Heldt HW (2000) Photorespiration. In: Leegood RC, Sharkey TD and von Caemmerer S (eds) Advance in Photosynthesis, Vol 9, pp 115–136. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Douce R, Bourguignon J, Neuburger M and Rebeille F (2001) The glycine decarboxylase system: a fascinating complex. Trends Plant Sci 6:167–176

    Article  PubMed  CAS  Google Scholar 

  • Edman JC, Goldstein AL and Erbe JG (1993) Para-aminoben-zoate synthase gene of Saccharomyces cerevisiae encodes a bifunctional enzyme. Yeast 9: 669–675

    Article  PubMed  CAS  Google Scholar 

  • Fall R and Benson AA (1996) Leaf methanol—the simplest natural product from plants. Trends Plant Sci 1: 296–301

    Google Scholar 

  • Ferro M, Salvi D, Riviere-Rolland H, Vermat T, Seigneurin-Berny D, Grunwald D, Garin J, Joyard J and Rolland N (2002) Integral membrane proteins of the chloroplast envelope: iden­tification and subcellular localization of new transporters. Proc Natl Acad Sci USA. 99:11487–11492

    Article  PubMed  CAS  Google Scholar 

  • Freemantle SJ, Taylor SM, Krystal G and Moran RG (1995) Upstream organization of and multiple transcripts from the human folylpoly-gamma-glutamate synthetase gene. J Biol Chem 270: 9579–9584

    Article  PubMed  CAS  Google Scholar 

  • Gout E, Aubert S, Bligny R, Rebeille R, Nonomura AR, Benson A and Douce R (2000) Metabolism of methanol in plant cells. Carbon-13 nuclear magnetic resonance studies. Plant Physiol 123:287–296

    Article  PubMed  CAS  Google Scholar 

  • Goyer A, Illarionova V, Roje S, Fischer M, Bacher A, Hanson AD (2004) Folate biosynthesis in higher plants. cDNA cloning, heterologous expression, and characterization of dihydroneopterin aldolases. Plant Physiol 135: 103–111.

    Article  PubMed  CAS  Google Scholar 

  • Green JM and Nichols BP (1991) p-Aminobenzoate biosynthesis in Escherichia coli. Purification of aminodeoxy-chorismate lyase and cloning of pabC. J Biol Chem 266: 12971–12975

    PubMed  CAS  Google Scholar 

  • Hanson AD and Roje S (2001) One-carbon metabolism in higher plants. Annu Rev Plant Physiol Plant Mol Biol 52: 119–137

    Article  PubMed  CAS  Google Scholar 

  • Hanson AD and Gregory JF, III (2002) Synthesis and turnover of folates in plants. Curr Opin Plant Biol 5: 244–249

    Article  PubMed  CAS  Google Scholar 

  • Hourton-Cabassa C, Ambard-Bretteville F, Rimy R and Colas des Francs-Small C (1998) Stress induction of mitochondrial formate dehydrogenase in potato leaves. Plant Physiol 116: 627–635

    Article  PubMed  CAS  Google Scholar 

  • Hyde JE and Sims PF (2001) Sulfa-drug resistance in Plasmodium falciparum. Trends Parasitol 17: 265–266

    Article  PubMed  CAS  Google Scholar 

  • Imeson HC, Zheng L and Cossins EA (1990) Folylpoly-glutamate derivatives of Pisum sativum L. Determination of polyglutamate chain lengths by high performance liquid chromatography following conversion to p-aminoben-zoylpolyglutamates. Plant Cell Physiol 31: 223–231

    CAS  Google Scholar 

  • Igamberdiev AU, Bykova NV and Kleczkowski LA (1999) Origins and metabolism of formate in higher plants. Plant Physiol Biochem 37: 503–513

    CAS  Google Scholar 

  • Ivanetich KM and Santi DV (1990) Bifunctional thymidylate synthase-dihydrofolate reductase in protozoa. FASEB J 4: 1591–1597

    PubMed  CAS  Google Scholar 

  • Iwai K, Ikeda M and Kobashi M (1980) Intracellular distribution, purification, and properties of dihydrofolate synthetase from pea seedlings. Meth Enzymol 66: 581–585

    Article  PubMed  CAS  Google Scholar 

  • Kirk CD, Imeson HC, Zheng L and Cossins EA (1994) The affinity of pea cotyledon 10-formyltetrahydrofolate synthetase for polyglutamate substrates. Phytochemistry 35: 291–296

    Article  CAS  Google Scholar 

  • Kirk CD, Chen L, Imeson HC and Cossins EA (1995) A 5,10-methylenetetrahydrofolate dehydrogenase: 5,10-methenylte-trahydrofolate cyclohydrolase protein from Pisum sativum. Phytochemistry 39: 1309–1317

    Article  CAS  Google Scholar 

  • Liang PH and Anderson KS (1998) Substrate channeling and domain-domain interactions in bifunctional thymidylate synthase-dihydrofolate reductase. Biochemistry 37: 12195–12205

    Article  PubMed  CAS  Google Scholar 

  • Lopez P and Lacks SA (1993) A bifunctional protein in the folate biosynthetic pathway of Streptococcus pneumoniae with dihydroneopterin aldolase and hydroxymethyldihy-dropterin pyrophosphokinase activities. J Bacteriol 175: 2214–2220

    PubMed  CAS  Google Scholar 

  • Luo M, Orsi R, Patrucco E, Pancaldi S and Cella R (1997) Multiple transcription start sites of the carrot dihydrofolate reductase-thymidylate synthase gene, and sub-cellular localization of the bifunctional protein. Plant Mol Biol 33: 709–722

    Article  PubMed  CAS  Google Scholar 

  • Masters C (1997) Gluconeogenesis and the peroxisome. Mol Cell Biochem 166: 159–168

    Article  PubMed  CAS  Google Scholar 

  • Mathis JB and Brown GM (1980) Dihydroneopterin aldolase from Escherichia coli. Meth Enzymol 66: 556–560

    Article  PubMed  CAS  Google Scholar 

  • Matthews RG, Sheppard C and Goulding C (1998) Methylenetetrahydrofolate reductase and methionine syn­thase: biochemistry and molecular biology. Eur J Pediatr 157 (Suppl 2): S54–9

    Article  PubMed  CAS  Google Scholar 

  • McBurney MW and Whitmore GF (1974) Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells. Cell 2: 173–182

    Article  PubMed  CAS  Google Scholar 

  • Mouillon JM, Aubert S, Bourguignon J, Gout E, Douce R and Rebeille F (1999) Glycine and serine catabolism in non-photosynthetic higher plant cells: their role in C x metabolism. Plant J 20: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Mouillon JM, Ravanel S, Douce R and Rebeille F (2002) Folate synthesis in higher-plant mitochondria: coupling between the dihydropterin pyrophosphokinase and the dihydropteroate synthase activities. Biochem J 363: 313–319

    Article  PubMed  CAS  Google Scholar 

  • Nar H, Huber R, Auerbach G, Fischer M, Hosl C, Ritz H, Bracher A, Meining W, Eberhardt S and Bacher A (1995) Active site topology and reaction mechanism of GTP cyclo-hydrolase I. Proc Natl Acad Sci USA 92: 12120–5

    Article  PubMed  CAS  Google Scholar 

  • Neuburger M., Rebeille F, Jourdain A, Nakamura S and Douce R (1996) Mitochondria are a major site for folate and thymidylate synthesis in plants. J Biol Chem 271: 9466–9472

    Article  PubMed  CAS  Google Scholar 

  • Nichols BP, Seibold AM and Doktor SZ (1989) Para-aminoben-zoate synthesis from chorismate occurs in two steps. J Biol Chem 264: 8597–8601

    PubMed  CAS  Google Scholar 

  • Nour JM and Rabinowitz JC (1991) Isolation, characterization and structural organization of 1O-formyltetrahydro-folate synthetase from spinach leaves. J Biol Chem 266: 18363–18369

    PubMed  CAS  Google Scholar 

  • Pasternack LB, Laude DA, Jr and Appling R (1992) 13C NMR detection of folate-mediated serine and glycine synthesis in vivo in Saccharomyces cerevisiae. Biochemistry 31:8713–8719

    Article  PubMed  CAS  Google Scholar 

  • Prabhu V, Chatson KB, Abrams GD and King J (1996) 13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis. Plant Physiol 112:207–216

    Article  PubMed  CAS  Google Scholar 

  • Prabhu V, Chatson KB, Lui H, Abrams GD and King J (1998) Effects of sulfanilamide and methotrexate on 13C fluxes through the glycine decarboxylase/serine hydroxymethyl­transferase enzyme system in Arabidopsis. Plant Physiol 116: 137–144

    Article  PubMed  CAS  Google Scholar 

  • Ranocha P, McNeil SD, Ziemak MJ, Li C, Tarczynski MC and Hanson AD (2001) The S-methylmethionine cycle in angio-sperms: ubiquity, antiquity and activity. Plant J 25: 575–584.

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Gakiere B, Job D and Douce R (1998) The specific features of methionine biosynthesis and metabolism in plants. Proc Natl Acad Sci USA 95: 7805–7812

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Cherest H, Jabrin S, Grunwald D, Surdin-Kerjan Y, Douce R and Rebeille F (2001) Tetrahydrofolate biosynthesis in plants: molecular and functional characterization of dihy-drofolate synthetase and three isoforms of folylpolyglutamate synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA 98: 15360–15365

    Article  PubMed  CAS  Google Scholar 

  • Ravanel S, Block MA, Rippert P, Jabrin S, Curien G, Rebeille F, Douce R (2004) Methionine metabolism in plants: chloro-plasts are autonomous for de novo methionine synthesis and can import S-adenosylmethionine from the cytosol. J Biol Chem 279: 22548–22557

    Article  PubMed  CAS  Google Scholar 

  • Rebeille F, Neuburger M and Douce R (1994) Interaction between glycine decarboxylase, serine hydroxymethyltransferase and tetrahydrofolate polyglutamates in pea leaf mitochondria. Biochem J 302: 223–228

    PubMed  CAS  Google Scholar 

  • Rebeille F, Macherel D, Mouillon JM, Garin J and Douce R (1997) Folate biosynthesis in higher plants: purification and molecular cloning of a bifunctional 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase/7,8-dihydropteroate synthase localized in mitochondria. EMBO J 16: 947–957

    Article  PubMed  CAS  Google Scholar 

  • Roje S, Wang H, McNeil SD, Raymond RK, Appling DR, Shachar-Hill Y, Bohnert HJ and Hanson AD (1999) Isolation, characterization and functional expression of cDNAs encoding NADH-dependent methylenetetrahydro-folate reductase from higher plants. J Biol Chem 274: 36089–36096

    Article  PubMed  CAS  Google Scholar 

  • Roje S, Janave MT, Ziemak MJ and Hanson AD (2002a) Cloning and characterization of mitochondrial 5-formyltetrahydrofolate cycloligase from higher plants. J Biol Chem 277: 42748–2754

    Article  PubMed  CAS  Google Scholar 

  • Roje S, Chan SY, Kaplan F, Raymond RK, Home DW, Appling DR and Hanson AD (2002b) Metabolic engineering in yeast demonstrates that S-adenosylmethionine controls flux through the methylenetetrahydrofolate reductase reaction in vivo. J Biol Chem 277:4056–0561

    Article  PubMed  CAS  Google Scholar 

  • Roland S, Ferone R, Harvey RJ, Styles VL and Morrison RW (1979) The characteristics and significance of sulfonamides as substrates for Escherichia coli dihydropteroate synthase. J Biol Chem 254:10337–10345

    PubMed  CAS  Google Scholar 

  • Salcedo E, Cortese JF, Plowe CV, Sims PF and Hyde JEA (2001) A bifunctional dihydrofolate synthetase-folylpolyglutamate synthetase in Plasmodium falciparum identified by functional complementation in yeast and bacteria. Mol Biochem Parasitol 112:239–52

    Article  PubMed  CAS  Google Scholar 

  • Schirch LV (1984) Folates in glycine and serine metabolism. In: Blakley RL, Benkovic SJ (eds) Folates and Pterins, Vol 1, pp 399–431. Wiley (Interscience), New York

    Google Scholar 

  • Schoedon G, Redweik U, Frank G, Cotton RG and Blau N (1992) Allosteric characteristics of GTP cyclohydrolase I from Escherichia coli. Eur J Biochem 210 : 561–568

    Article  PubMed  CAS  Google Scholar 

  • Scott J, Rebeille F and Fletcher J (2000) Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 80: 795–824

    Article  CAS  Google Scholar 

  • Shingles R, Woodrow L and Grodzinski B (1984) Effects of gly-colate pathway intermediates on glycine decarboxylation and serine synthesis in Pea (Pisum sativum L). Plant Physiol 74: 705–710

    Article  PubMed  CAS  Google Scholar 

  • Sohta Y, Ohta T and Masada M (1997) Purification and some properties of GTP cyclohydrolase I from spinach leaves. Biosci Biotech Biochem 61:1081–1085

    Article  CAS  Google Scholar 

  • Stover P and Schirch V (1992) Enzymatic mechanism for the hydrolysis of 5,10-methenyl tetrahydropteroylglutamate to 5-formyltetrahydropteroylglutamate by serine hydroxymethyl transferase. Biochemistry 31: 2155–2164

    Article  PubMed  CAS  Google Scholar 

  • Stover P and Schirch V (1993) The metabolic role of leucovorin. Trends Biochem Sci 18: 102–106

    Article  PubMed  CAS  Google Scholar 

  • Strong W, Joshi G, Lura R, Muthukumaraswamy N and Schirch V (1987) 10-Formyltetrahydrofolate synthetase. Evidence for a conformational change in the enzyme upon binding of tetrahy-dropteroylpolyglutamates. J Biol Chem 262: 12519–12525

    PubMed  CAS  Google Scholar 

  • Strong WB, Tendler SJ, Seither RL, Goldman ID and Schich V (1990) Purification and properties of serine hydroxymethyltrans-ferase and C,-tetrahydrofolate synthetase from L1210 cells. J Biol Chem 265: 12149–12155

    PubMed  CAS  Google Scholar 

  • Suzuki Y and Brown GM (1974) The biosynthesis of folic acid. XII. Purification and properties of dihydroneopterin triphosphate pyrophosphohydrolase. J Biol Chem 249: 2405–2410

    PubMed  CAS  Google Scholar 

  • Talarico TL, Ray P., Dev IK, Merill B and Dallas WS (1992) Cloning, sequence analysis, and overexpression of Escherichia coli folK, the gene coding for 7,8-dihydro-6-hydrox-ymethylpterin-pyrophosphokinase. J Bacteriol 174: 5971–5977

    PubMed  CAS  Google Scholar 

  • Titus SA and Moran RG (2000) Retrovirally mediated complementation of the glyB phenotype. Cloning of a human gene encoding the carrier for entry of folates into mitochondria. J Biol Chem 275: 36811–36817

    Article  PubMed  CAS  Google Scholar 

  • Triglia T and Cowman AF (1994) Primary structure and expression of the dihydropteroate synthetase gene of Plasmodium falciparum. Proc Natl Acad Sci USA 91: 7149–7153

    Article  PubMed  CAS  Google Scholar 

  • Triglia T and Cowman AF (1999) Plasmodium falciparum: a homologue of p-aminobenzoic acid synthetase. Exp Parasitol 92:154–158

    Article  PubMed  CAS  Google Scholar 

  • Turner SR, Ireland R, Morgan C and Rawsthorne S (1992) Identification and localisation of multiple forms of serine hydroxymethyltransferase in pea (Pisum sativum) and charac­terization of a cDNA encoding a mitochondrial isoform. J Biol Chem 267: 13528–13534

    PubMed  CAS  Google Scholar 

  • Volpe F, Ballantine SP and Delves CJ (1993) The multifunctional folic acid synthesis fas gene of Pneumocystis carinii encodes dihydroneopterin aldolase, hydroxymethyldihy-dropterin pyrophosphokinase and dihydropteroate synthase. Eur J Biochem 216: 449–458

    Article  PubMed  CAS  Google Scholar 

  • Wallsgrove RM, Lea PJ and Miflin B (1983) Intracellular localization of aspartate kinase and the enzymes of threonine and methionine biosynthesis in green leaves. Plant Physiol 71: 780–784

    Article  PubMed  CAS  Google Scholar 

  • Werner-Felmayer G, Golderer G and Werner ER (2002) Tetrahydrobiopterin biosynthesis, utilization and pharmacological effects. Curr Drug Metab 3: 159–173

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama T, Wilson LM and Hatakeyama K (2001) GTP cyclohydrolase I feedback regulatory protein-dependent and -independent inhibitors of GTP cyclohydrolase I. Arch Biochem Biophys 388: 67–73

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ravanel, S., Douce, R., Rébeillé, F. (2004). The Uniqueness of Tetrahydrofolate Synthesis and One-Carbon Metabolism in Plants. In: Day, D.A., Millar, A.H., Whelan, J. (eds) Plant Mitochondria: From Genome to Function. Advances in Photosynthesis and Respiration, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-2400-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4020-2400-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6651-0

  • Online ISBN: 978-1-4020-2400-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics