Abstract
We outline our approach for studying the selective autophagy of peroxisomes (pexophagy), using fluorescence microscopy in tissue cell culture models. Ratiometric reporters, which specifically localize to peroxisomes, allow a quantitative assessment of pexophagy in fixed and live cells, as well as whole organisms. We discuss chemical and physiological inducers of pexophagy and any overlap with the induction of mitophagy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Islinger M, Grille S, Fahimi HD, Schrader M (2012) The peroxisome: an update on mysteries. Histochem Cell Biol 137(5):547–574. https://doi.org/10.1007/s00418-012-0941-4
Wanders RJA et al (2023) The physiological functions of human peroxisomes. Physiol Rev 103(1):957–1024. https://doi.org/10.1152/physrev.00051.2021
Tang D, Kroemer G (2020) Peroxisome: the new player in ferroptosis. Signal Transduct Target Ther 5(1):273. https://doi.org/10.1038/s41392-020-00404-3
Zou Y et al (2020) Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585(7826):603–608. https://doi.org/10.1038/s41586-020-2732-8
Jo DS et al (2020) Loss of HSPA9 induces peroxisomal degradation by increasing pexophagy. Autophagy 16(11):1989–2003. https://doi.org/10.1080/15548627.2020.1712812
Marcassa E et al (2018) Dual role of USP30 in controlling basal pexophagy and mitophagy. EMBO Rep 19:e45595. https://doi.org/10.15252/embr.201745595
Riccio V et al (2019) Deubiquitinating enzyme USP30 maintains basal peroxisome abundance by regulating pexophagy. J Cell Biol 218(3):798–807. https://doi.org/10.1083/jcb.201804172
Waterham HR, Ferdinandusse S, Wanders RJ (2016) Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 1863(5):922–933. https://doi.org/10.1016/j.bbamcr.2015.11.015
Nazarko TY (2017) Pexophagy is responsible for 65% of cases of peroxisome biogenesis disorders. Autophagy 13(5):991–994. https://doi.org/10.1080/15548627.2017.1291480
McWilliams TG et al (2016) Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J Cell Biol 214(3):333–345. https://doi.org/10.1083/jcb.201603039
Katayama H et al (2011) A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem Biol 18(8):1042–1052. https://doi.org/10.1016/j.chembiol.2011.05.013
Sun N et al (2015) Measuring in vivo mitophagy. Mol Cell 60(4):685–696. https://doi.org/10.1016/j.molcel.2015.10.009
Lee JJ et al (2018) Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J Cell Biol 217(5):1613–1622. https://doi.org/10.1083/jcb.201801044
Barone FG et al. (2023) Whole organism and tissue specific analysis of pexophagy in Drosophila. bioRxiv:2023.2011.2017.567516. https://doi.org/10.1101/2023.11.17.567516
Skowyra ML, Feng P, Rapoport TA (2023) Towards solving the mystery of peroxisomal matrix protein import. Trends Cell Biol. https://doi.org/10.1016/j.tcb.2023.08.005
Kimura S, Noda T, Yoshimori T (2007) Dissection of the autophagosome maturation process by a novel reporter protein, tandem fluorescent-tagged LC3. Autophagy 3(5):452–460. https://doi.org/10.4161/auto.4451
Koch A et al (2005) A role for Fis1 in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 16(11):5077–5086. https://doi.org/10.1091/mbc.e05-02-0159
Deosaran E et al (2013) NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 126(Pt 4):939–952. https://doi.org/10.1242/jcs.114819
Nazarko TY et al (2014) Peroxisomal Atg37 binds Atg30 or palmitoyl-CoA to regulate phagophore formation during pexophagy. J Cell Biol 204(4):541–557. https://doi.org/10.1083/jcb.201307050
Dolese DA et al (2022) Degradative tubular lysosomes link pexophagy to starvation and early aging in C. elegans. Autophagy 18(7):1522–1533. https://doi.org/10.1080/15548627.2021.1990647
Wilhelm LP et al (2022) BNIP3L/NIX regulates both mitophagy and pexophagy. EMBO J:e111115. https://doi.org/10.15252/embj.2022111115
Liang JR, Lingeman E, Ahmed S, Corn JE (2018) Atlastins remodel the endoplasmic reticulum for selective autophagy. J Cell Biol 217(10):3354–3367. https://doi.org/10.1083/jcb.201804185
Barone FG, Urbe S, Clague MJ (2023) Segregation of pathways leading to pexophagy. Life Sci Alliance 6(5). https://doi.org/10.26508/lsa.202201825
Lee RM et al (2024) Believing is seeing—the deceptive influence of bias in quantitative microscopy. J Cell Sci 137(1). https://doi.org/10.1242/jcs.261567
Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019
Montava-Garriga L, Singh F, Ball G, Ganley IG (2020) Semi-automated quantitation of mitophagy in cells and tissues. Mech Ageing Dev 185:111196. https://doi.org/10.1016/j.mad.2019.111196
An H, Harper JW (2018) Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy. Nat Cell Biol 20(2):135–143. https://doi.org/10.1038/s41556-017-0007-x
Li H et al (2021) The peroxisome-autophagy redox connection: a double-edged sword? Front Cell Dev Biol 9:814047. https://doi.org/10.3389/fcell.2021.814047
Narendra D, Tanaka A, Suen DF, Youle RJ (2008) Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol 183(5):795–803. https://doi.org/10.1083/jcb.200809125
Novak I et al (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11(1):45–51. https://doi.org/10.1038/embor.2009.256
Ney PA (2015) Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX. Biochim Biophys Acta 1853(10 Pt B):2775–2783. https://doi.org/10.1016/j.bbamcr.2015.02.022
McWilliams TG et al (2018) Basal mitophagy occurs independently of PINK1 in mouse tissues of high metabolic demand. Cell Metab 27(2):439–449. e435. https://doi.org/10.1016/j.cmet.2017.12.008
Elcocks H et al (2023) FBXL4 ubiquitin ligase deficiency promotes mitophagy by elevating NIX levels. EMBO J:e112799. https://doi.org/10.15252/embj.2022112799
Nguyen-Dien GT et al (2022) FBXL4 suppresses mitophagy by restricting the accumulation of NIX and BNIP3 mitophagy receptors. bioRxiv:2022.2010.2012.511867 https://doi.org/10.1101/2022.10.12.511867
Cao Y et al (2023) A mitochondrial SCF-FBXL4 ubiquitin E3 ligase complex degrades BNIP3 and NIX to restrain mitophagy and prevent mitochondrial disease. EMBO J:e113033. https://doi.org/10.15252/embj.2022113033
Costello JL, Passmore JB, Islinger M, Schrader M (2018) Multi-localized proteins: the peroxisome-mitochondria connection. Subcell Biochem 89:383–415. https://doi.org/10.1007/978-981-13-2233-4_17
Liang JR et al (2015) USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death. EMBO Rep 16(5):618–627. https://doi.org/10.15252/embr.201439820
Bingol B, Sheng M (2016) Mechanisms of mitophagy: PINK1, parkin, USP30 and beyond. Free Radic Biol Med 100:210–222. https://doi.org/10.1016/j.freeradbiomed.2016.04.015
Rusilowicz-Jones EV et al (2022) Benchmarking a highly selective USP30 inhibitor for enhancement of mitophagy and pexophagy. Life Sci Alliance 5(2). https://doi.org/10.26508/lsa.202101287
Rusilowicz-Jones EV et al (2020) USP30 sets a trigger threshold for PINK1-PARKIN amplification of mitochondrial ubiquitylation. Life Sci Alliance 3(8). https://doi.org/10.26508/lsa.202000768
Rasmussen NL, Kournoutis A, Lamark T, Johansen T (2022) NBR1: the archetypal selective autophagy receptor. J Cell Biol 221(11). https://doi.org/10.1083/jcb.202208092
Kluge AF et al (2018) Novel highly selective inhibitors of ubiquitin specific protease 30 (USP30) accelerate mitophagy. Bioorg Med Chem Lett 28(15):2655–2659. https://doi.org/10.1016/j.bmcl.2018.05.013
Phu L et al (2020) Dynamic regulation of mitochondrial import by the ubiquitin system. Mol Cell 77(5):1107–1123 e1110. https://doi.org/10.1016/j.molcel.2020.02.012
Fang TZ et al (2023) Knockout or inhibition of USP30 protects dopaminergic neurons in a Parkinson’s disease mouse model. Nat Commun 14(1):7295. https://doi.org/10.1038/s41467-023-42876-1
Acknowledgments
FB has received PhD funding from the Wellcome Trust (102172/Z/13Z). MC is a Royal Society Industry Fellow INF\R2\212031.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Barone, F.G., Urbé, S., Clague, M.J. (2024). Fluorescence Methods to Measure Pexophagy. In: Nezis, I.P. (eds) Selective Autophagy. Methods in Molecular Biology, vol 2845. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4067-8_11
Download citation
DOI: https://doi.org/10.1007/978-1-0716-4067-8_11
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-4066-1
Online ISBN: 978-1-0716-4067-8
eBook Packages: Springer Protocols