Skip to main content

Using Dimensionality Reduction to Visualize Phenotypic Changes in High-Throughput Microscopy

  • Protocol
  • First Online:
Imaging Cell Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2800))

  • 232 Accesses

Abstract

High-throughput microscopy has enabled screening of cell phenotypes at unprecedented scale. Systematic identification of cell phenotype changes (such as cell morphology and protein localization changes) is a major analysis goal. Because cell phenotypes are high-dimensional, unbiased approaches to detect and visualize the changes in phenotypes are still needed. Here, we suggest that changes in cellular phenotype can be visualized in reduced dimensionality representations of the image feature space. We describe a freely available analysis pipeline to visualize changes in protein localization in feature spaces obtained from deep learning. As an example, we use the pipeline to identify changes in subcellular localization after the yeast GFP collection was treated with hydroxyurea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagheri N, Carpenter AE, Lundberg E et al (2022) The new era of quantitative cell imaging – challenges and opportunities. Mol Cell 82:241–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Meijering E (2020) A bird’s-eye view of deep learning in bioimage analysis. Comput Struct Biotechnol J 18:2312. https://doi.org/10.1016/j.csbj.2020.08.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moen E, Bannon D, Kudo T et al (2019) Deep learning for cellular image analysis. Nat Methods 16:1233–1246. https://doi.org/10.1038/s41592-019-0403-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Graham S, Vu QD, Raza SEA et al (2019) Hover-Net: simultaneous segmentation and classification of nuclei in multi-tissue histology images. Med Image Anal 58:101563. https://doi.org/10.1016/j.media.2019.101563

    Article  PubMed  Google Scholar 

  5. Lu AX, Zarin T, Hsu IS, Moses AM (2019) YeastSpotter: accurate and parameter-free web segmentation for microscopy images of yeast cells. Bioinformatics 35:4525–4527. https://doi.org/10.1093/bioinformatics/btz402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hollandi R, Szkalisity A, Toth T et al (2020) nucleAIzer: a parameter-free deep learning framework for nucleus segmentation using image style transfer. Cell Syst 10:453–458.e6. https://doi.org/10.1016/j.cels.2020.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Balestriero R, Ibrahim M, Sobal V et al (2023) A cookbook of self-supervised learning. arXiv. https://doi.org/10.48550/arXiv.2304.12210

  8. Lu AX, Kraus OZ, Cooper S, Moses AM (2019) Learning unsupervised feature representations for single cell microscopy images with paired cell inpainting. PLoS Comput Biol 15:e1007348. https://doi.org/10.1371/journal.pcbi.1007348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kobayashi H, Cheveralls KC, Leonetti MD, Royer LA (2022) Self-supervised deep learning encodes high-resolution features of protein subcellular localization. Nat Methods 19:995–1003. https://doi.org/10.1038/s41592-022-01541-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Midtvedt B, Pineda J, Skärberg F et al (2022) Single-shot self-supervised object detection in microscopy. Nat Commun 13:7492. https://doi.org/10.1038/s41467-022-35004-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Razdaibiedina A, Brechalov A, Friesen H (2023) et al, PIFiA: self-supervised approach for protein functional annotation from single-cell imaging data. bioRxiv. https://doi.org/10.1101/2023.02.24.529975

  12. Caicedo JC, Cooper S, Heigwer F et al (2017) Data-analysis strategies for image-based cell profiling. Nat Methods 14:849–863. https://doi.org/10.1038/nmeth.4397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chong YT, Koh JLY, Friesen H et al (2015) Yeast proteome dynamics from single cell imaging and automated analysis. Cell 161:1413–1424. https://doi.org/10.1016/j.cell.2015.04.051

    Article  CAS  PubMed  Google Scholar 

  14. Mattiazzi Usaj M, Sahin N, Friesen H et al (2020) Systematic genetics and single-cell imaging reveal widespread morphological pleiotropy and cell-to-cell variability. Mol Syst Biol 16:e9243. https://doi.org/10.15252/msb.20199243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lu AX, Lu AX, Schormann W et al (2020) The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers. arXiv. https://doi.org/10.48550/arXiv.1906.07282

  16. Kraus OZ, Grys BT, Ba J et al (2017) Automated analysis of high-content microscopy data with deep learning. Mol Syst Biol 13:924. https://doi.org/10.15252/msb.20177551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cox MJ, Jaensch S, Van de Waeter J et al (2020) Tales of 1,008 small molecules: phenomic profiling through live-cell imaging in a panel of reporter cell lines. Sci Rep 10:13262. https://doi.org/10.1038/s41598-020-69354-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cuccarese MF, Earnshaw BA, Heiser K et al (2020) Functional immune mapping with deep-learning enabled phenomics applied to immunomodulatory and COVID-19 drug discovery. bioRxiv. https://doi.org/10.1101/2020.08.02.233064

  19. Naik AW, Kangas JD, Sullivan DP, Murphy RF (2016) Active machine learning-driven experimentation to determine compound effects on protein patterns. elife 5:e10047. https://doi.org/10.7554/eLife.10047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lu AX, Moses AM (2016) An unsupervised kNN method to systematically detect changes in protein localization in high-throughput microscopy images. PLoS One 11:e0158712. https://doi.org/10.1371/journal.pone.0158712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lu AX, Chong YT, Hsu IS et al (2018) Integrating images from multiple microscopy screens reveals diverse patterns of change in the subcellular localization of proteins. elife 7:e31872. https://doi.org/10.7554/eLife.31872

    Article  PubMed  PubMed Central  Google Scholar 

  22. Donovan-Maiye RM, Brown JM, Chan CK et al (2022) A deep generative model of 3D single-cell organization. PLoS Comput Biol 18:e1009155. https://doi.org/10.1371/journal.pcbi.1009155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Handfield L-F, Chong YT, Simmons J et al (2013) Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins. PLoS Comput Biol 9:e1003085. https://doi.org/10.1371/journal.pcbi.1003085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Way GP, Kost-Alimova M, Shibue T et al (2021) Predicting cell health phenotypes using image-based morphology profiling. Mol Biol Cell 32:995–1005. https://doi.org/10.1091/mbc.E20-12-0784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. La Manno G, Soldatov R, Zeisel A et al (2018) RNA velocity of single cells. Nature 560:494–498. https://doi.org/10.1038/s41586-018-0414-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koh JLY, Chong YT, Friesen H et al (2015) CYCLoPs: a comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3 (Bethesda) 5:1223–1232. https://doi.org/10.1534/g3.115.017830

    Article  PubMed  Google Scholar 

  27. McInnes L, Healy J, Melville J (2020) UMAP: uniform manifold approximation and projection for dimension reduction. arXiv. https://doi.org/10.48550/arXiv.1802.03426

  28. Huh W-K, Falvo JV, Gerke LC et al (2003) Global analysis of protein localization in budding yeast. Nature 425:686–691. https://doi.org/10.1038/nature02026

    Article  CAS  PubMed  Google Scholar 

  29. McQuin C, Goodman A, Chernyshev V et al (2018) CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol 16:e2005970. https://doi.org/10.1371/journal.pbio.2005970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank members of the Moses lab for their input. The analysis reported here was performed on infrastructure obtained with grants to AMM from the Canadian Foundation for Innovation (CFI) AMM is supported by a Canada Research Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex X. Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lu, A.X., Moses, A.M. (2024). Using Dimensionality Reduction to Visualize Phenotypic Changes in High-Throughput Microscopy. In: Wuelfing, C., Murphy, R.F. (eds) Imaging Cell Signaling. Methods in Molecular Biology, vol 2800. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3834-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3834-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3833-0

  • Online ISBN: 978-1-0716-3834-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics