Skip to main content

A Magnetic Pincher for the Dynamic Measurement of the Actin Cortex Thickness in Live Cells

  • Protocol
  • First Online:
Imaging Cell Signaling

Abstract

The actin cortex is an essential element of the cytoskeleton allowing cells to control and modify their shape. It is involved in cell division and migration. However, probing precisely the physical properties of the actin cortex has proved to be challenging: it is a thin and dynamic material, and its location in the cell—directly under the plasma membrane—makes it difficult to study with standard light microscopy and cell mechanics techniques. In this chapter, we present a novel protocol to probe dynamically the thickness of the cortex and its fluctuations using superparamagnetic microbeads in a uniform magnetic field. A bead ingested by the cell and another outside the cell attract each other due to dipolar forces. By tracking their position with nanometer precision, one can measure the thickness of the cortex pinched between two beads and monitor its evolution in time. We first present the set of elements necessary to realize this protocol: a magnetic field generator adapted to a specific imaging setup and the aforementioned superparamagnetic microbeads. Then we detail the different steps of a protocol that can be used on diverse cell types, adherent or not.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chugh P, Paluch EK (2018) The actin cortex at a glance. J Cell Sci 131:jcs186254. https://doi.org/10.1242/jcs.186254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fritzsche M, Lewalle A, Duke T et al (2013) Analysis of turnover dynamics of the submembranous actin cortex. Mol Biol Cell 24:757–767. https://doi.org/10.1091/mbc.e12-06-0485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Svitkina TM, Neyfakh AA, Bershadsky AD (1986) Actin cytoskeleton of spread fibroblasts appears to assemble at the cell edges. J Cell Sci 82:235–248. https://doi.org/10.1242/jcs.82.1.235

    Article  CAS  PubMed  Google Scholar 

  4. Chugh P, Clark AG, Smith MB et al (2017) Actin cortex architecture regulates cell surface tension. Nat Cell Biol 19:689–697. https://doi.org/10.1038/ncb3525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Charras GT, Hu C-K, Coughlin M et al (2006) Reassembly of contractile actin cortex in cell blebs. J Cell Biol 175:477–490. https://doi.org/10.1083/jcb.200602085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Eghiaian F, Rigato A, Scheuring S (2015) Structural, mechanical, and dynamical variability of the actin cortex in living cells. Biophys J 108:1330–1340. https://doi.org/10.1016/j.bpj.2015.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Clark AG, Dierkes K, Paluch EK (2013) Monitoring actin cortex thickness in live cells. Biophys J 105:570–580. https://doi.org/10.1016/j.bpj.2013.05.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Laplaud V, Levernier N, Pineau J et al (2021) Pinching the cortex of live cells reveals thickness instabilities caused by myosin II motors. Sci Adv 7:eabe3640. https://doi.org/10.1126/sciadv.abe3640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pierre P, Turley SJ, Gatti E et al (1997) Developmental regulation of MHC class II transport in mouse dendritic cells. Nature 388:787–792. https://doi.org/10.1038/42039

    Article  CAS  PubMed  Google Scholar 

  10. Halbach K (1985) Application of permanent magnets in accelerators and electron storage rings (invited). J Appl Phys 57:3605–3608. https://doi.org/10.1063/1.335021

    Article  Google Scholar 

  11. Tretiak O, Blümler P, Bougas L (2019) Variable single-axis magnetic-field generator using permanent magnets. AIP Adv 9:115312. https://doi.org/10.1063/1.5130896

    Article  Google Scholar 

  12. Fonnum G, Johansson C, Molteberg A et al (2005) Characterisation of Dynabeads® by magnetization measurements and Mössbauer spectroscopy. J Magn Magn Mater 293:41–47. https://doi.org/10.1016/j.jmmm.2005.01.041

    Article  CAS  Google Scholar 

  13. Bauër P, Tavacoli J, Pujol T et al (2017) A new method to measure mechanics and dynamic assembly of branched actin networks. Sci Rep 7:15688. https://doi.org/10.1038/s41598-017-15638-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Azioune A, Storch M, Bornens M et al (2009) Simple and rapid process for single cell micro-patterning. Lab Chip 9:1640. https://doi.org/10.1039/b821581m

    Article  CAS  PubMed  Google Scholar 

  15. Carpi N, Carpi N, Piel M et al (2011) Micropatterning on glass with deep UV. Protoc Exch. https://doi.org/10.1038/protex.2011.238

  16. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  17. Gosse C, Croquette V (2002) Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys J 82:3314–3329. https://doi.org/10.1016/S0006-3495(02)75672-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Der Walt S, Schönberger JL, Nunez-Iglesias J et al (2014) Scikit-image: image processing in python. PeerJ 2:e453. https://doi.org/10.7717/peerj.453

    Article  PubMed  PubMed Central  Google Scholar 

  19. Clausen MP, Colin-York H, Schneider F et al (2017) Dissecting the actin cortex density and membrane-cortex distance in living cells by super-resolution microscopy. J Phys Appl Phys 50:064002. https://doi.org/10.1088/1361-6463/aa52a1

    Article  CAS  Google Scholar 

  20. Truong Quang BA, Peters R, Cassani DAD et al (2021) Extent of myosin penetration within the actin cortex regulates cell surface mechanics. Nat Commun 12:6511. https://doi.org/10.1038/s41467-021-26611-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bon P, Bourg N, Lécart S et al (2015) Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy. Nat Commun 6:7764. https://doi.org/10.1038/ncomms8764

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthieu Piel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vermeil, J. et al. (2024). A Magnetic Pincher for the Dynamic Measurement of the Actin Cortex Thickness in Live Cells. In: Wuelfing, C., Murphy, R.F. (eds) Imaging Cell Signaling. Methods in Molecular Biology, vol 2800. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3834-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3834-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3833-0

  • Online ISBN: 978-1-0716-3834-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics