Skip to main content

Genome Editing in Brassica juncea Using CRISPR/Cas9 Technology

  • Protocol
  • First Online:
Plant Functional Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2788))

  • 122 Accesses

Abstract

Modern genome editing tools particularly CRISPR/Cas9 have revolutionized plant genome manipulation for engineering resilience against changing climatic conditions, disease infestation, as well as functional genomic studies. CRISPR-mediated genome editing allows for editing at a single as well as multiple locations in the genome simultaneously, making it an effective tool for polyploid species too. However, still, its applications are limited to the model crops only. Extending it to crop plants will help improve field crops against the changing climates more rapidly and precisely. Here we describe the protocol for editing the genome of a field crop Brassica juncea (mustard), an allotetraploid and important oilseed crop of the Indo-Pak Subcontinent region. This protocol is based on the Agrobacterium-mediated transformation for the delivery of CRISPR components into the plant genome using cotyledon as explants. We elaborate on steps for recovering genome-edited knockouts, for validation of the edits, as well as recovering the transgene-free edited plants through a commonly used segregating approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng F, Wu J, Wang X (2014) Genome triplication drove the diversification of Brassica plants. Hortic Res 1:14024

    Article  PubMed  PubMed Central  Google Scholar 

  2. Cheng F, Liang J, Cai C, Cai X et al (2017) Genome sequencing supports a multi-vertex model for Brassiceae species. Curr Opin Plant Biol 36:79–87

    Article  CAS  PubMed  Google Scholar 

  3. Yang Y, Zhu K, Li H et al (2018) Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J 16(7):1322–1335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rahman H, Harwood J, Westlake R (2013) Increasing seed oil content in Brassica species through breeding and biotechnology. Lipid Technol 25(8):182–185

    Article  Google Scholar 

  5. Newkirk R, Classen H, Tyler RT (1997) Nutritional evaluation of low glucosinolate mustard meals (Brassica juncea) in broiler diets. Poult Sci 76(9):1272–1277

    Article  CAS  PubMed  Google Scholar 

  6. Xiong Z, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci 108(19):7908–7913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shan Q, Wang Y, Li J et al (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    Article  CAS  PubMed  Google Scholar 

  8. Mali P, Yang L, Esvelt KM et al (2013a) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mali P, Esvelt KM, Church GM (2013) Cas9 as a versatile tool for engineering biology. Nat Methods 10(10):957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sternberg SH, Redding S, Jinek M et al (2014) DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507(7490):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31(9):827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xie S, Shen B, Zhang C et al (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9(6):100448

    Article  Google Scholar 

  13. Cong L, Ran FA, Cox D et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schiml S, Fauser F, Puchta H (2014) The CRISPR/C as system can be used as nuclease for in planta gene targeting and as paired nickases for directed mutagenesis in Arabidopsis resulting in heritable progeny. Plant J 80(6):1139–1150

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NA is thankful to the International Centre for Genetic Engineering and Biotechnology (ICGEB) for supporting his work via CRP/PAK20–02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niaz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ahmad, N., Fatima, S., Hundleby, P., Mehboob-ur-Rahman (2024). Genome Editing in Brassica juncea Using CRISPR/Cas9 Technology. In: Maghuly, F. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 2788. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3782-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3782-1_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3781-4

  • Online ISBN: 978-1-0716-3782-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics