Skip to main content

Expression, Purification, and Cryo-EM Structural Analysis of an Outer Membrane Secretin Channel

  • Protocol
  • First Online:
Transmembrane β-Barrel Proteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2778))

Abstract

Secretin proteins form pores in the outer membranes of Gram-negative bacteria, and as such provide a means of transporting a wide variety of molecules out of or in to the cell. They are important components of several different bacterial secretion systems, surface filament assembly machineries, and virus assembly complexes. Despite accommodating a diverse assortment of molecules, including virulence factors, folded proteins, and whole viruses, the secretin family of proteins is highly conserved, particularly in their membrane-embedded β-barrel domain. We describe here a protocol for the expression, purification and cryo-EM structural determination of the pIV secretin from the Ff family of filamentous bacteriophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiol Spectr 4:1–19

    Article  CAS  Google Scholar 

  2. Silva YR de O, Contreras-Martel C, Macheboeuf P et al (2020) Bacterial secretins: mechanisms of assembly and membrane targeting. Protein Sci 29:893–904

    Article  Google Scholar 

  3. Majewski DD, Worrall LJ, Strynadka NC (2018) Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria. Curr Opin Struct Biol 51:61–72

    Article  CAS  PubMed  Google Scholar 

  4. Barbat B, Douzi B, Voulhoux R (2023) Structural lessons on bacterial secretins. Biochimie 205:110–116

    Article  CAS  PubMed  Google Scholar 

  5. Hu J, Worrall LJ, Hong C et al (2018) Cryo-EM analysis of the T3S injectisome reveals the structure of the needle and open secretin. Nat Commun 9:1–11

    Article  Google Scholar 

  6. Yan Z, Yin M, Xu D et al (2017) Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 24:177–183

    Article  CAS  PubMed  Google Scholar 

  7. Marvin DA, Symmons MF, Straus SK (2014) Structure and assembly of filamentous bacteriophages. Prog Biophys Mol Biol 114:80–122

    Article  CAS  PubMed  Google Scholar 

  8. Rakonjac J, Gold VAM, León-Quezada RI et al (2023) Structure, biology, and applications of filamentous bacteriophages. Cold Spring Harb Protoc

    Google Scholar 

  9. Hay ID, Lithgow T (2019) Filamentous phages: masters of a microbial sharing economy. EMBO Rep 20:1–24

    Article  Google Scholar 

  10. Feng J, Model P, Russel M (1999) A trans-envelope protein complex needed for filamentous phage assembly and export. Mol Microbiol 34:745–755

    Article  CAS  PubMed  Google Scholar 

  11. Russel M, Kazmierczak B (1993) Analysis of the structure and subcellular location of filamentous phage pIV. J Bacteriol 175:3998–4007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Linderoth NA, Model P, Russel M (1996) Essential role of a sodium dodecyl sulfate-resistant protein IV multimer in assembly-export of filamentous phage. J Bacteriol 178:1962–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Linderoth NA, Simon MN, Russel M (1997) The filamentous phage pIV multimer visualized by scanning transmission electron microscopy. Science 278:1635–1638

    Article  CAS  PubMed  Google Scholar 

  14. Marciano DK, Russel M, Simon SM (1999) An aqueous channel for filamentous phage export. Science 284:1516–1519

    Article  CAS  PubMed  Google Scholar 

  15. Opalka N, Beckmann R, Boisset N et al (2003) Structure of the filamentous phage pIV multimer by cryo-electron microscopy. J Mol Biol 325:461–470

    Article  CAS  PubMed  Google Scholar 

  16. Chua EYD, Mendez JH, Rapp M et al (2022) Better, faster, cheaper: recent advances in cryo-electron microscopy. Annu Rev Biochem 91:1–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Birch J, Cheruvara H, Gamage N et al (2020) Changes in membrane protein structural biology. Biology 9:401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choy BC, Cater RJ, Mancia F et al (2021) A 10-year meta-analysis of membrane protein structural biology: detergents, membrane mimetics, and structure determination techniques. Biochim Biophys Acta Biomembr 1863:1–9

    Article  Google Scholar 

  19. Russel M, Linderoth NA, Šali A (1997) Filamentous phage assembly: variation on a protein export theme. Gene 192:23–32

    Article  CAS  PubMed  Google Scholar 

  20. Conners R, McLaren M, Łapińska U et al (2021) CryoEM structure of the outer membrane secretin channel pIV from the f1 filamentous bacteriophage. Nat Commun 12:6316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Spagnuolo J, Opalka N, Wen WX et al (2010) Identification of the gate regions in the primary structure of the secretin pIV. Mol Microbiol 76:133–150

    Article  CAS  PubMed  Google Scholar 

  22. Hu J, Worrall LJ, Vuckovic M et al (2019) T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly. Nat Microbiol 4:2010–2019

    Article  CAS  PubMed  Google Scholar 

  23. Zivanov J, Nakane T, Forsberg BO et al (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. elife 7:e42166

    Article  PubMed  PubMed Central  Google Scholar 

  24. Punjani A, Rubinstein JL, Fleet DJ et al (2017) CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14:290–296

    Article  CAS  PubMed  Google Scholar 

  25. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  26. Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  27. Croll TI (2018) ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr D Struct Biol 74:519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jamali K, Käll L, Zhang R et al (2023) Automated model building and protein identification in cryo-EM maps. bioRxiv

    Google Scholar 

  29. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Cryst 53:240–255

    Article  CAS  Google Scholar 

  30. Liebschner D, Afonine PV, Baker ML et al (2019) Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol 75:861–877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tegunov D, Cramer P (2019) Real-time cryo-electron microscopy data preprocessing with Warp. Nat Methods 16:1146–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Beckers M, Mann D, Sachse C (2021) Structural interpretation of cryo-EM image reconstructions. Prog Biophys Mol Biol 160:26–36

    Article  CAS  PubMed  Google Scholar 

  33. Hay ID, Belousoff MJ, Dunstan RA et al (2018) Structure and membrane topography of the vibrio-type secretin complex from the type 2 secretion system of enteropathogenic Escherichia coli. J Bacteriol 200:e00521-17

    Article  PubMed  PubMed Central  Google Scholar 

  34. Williams CJ, Headd JJ, Moriarty NW et al (2018) MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci 27:293–315

    Article  CAS  PubMed  Google Scholar 

  35. Burley SK, Berman HM, Bhikadiya C et al (2019) Protein data bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Res 47:520–528

    Article  Google Scholar 

  36. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Conners R, León-Quezada RI, McLaren M et al (2023) Cryo-electron microscopy of the f1 filamentous phage reveals insights into viral infection and assembly. Nat Commun 14:1–15

    Article  Google Scholar 

Download references

Acknowledgments

A Wellcome Trust Seed Award in Science (210363/Z/18/Z) and Leverhulme Trust Research Project Grant (RPG-2023-069) supported R.C. and a BBSRC responsive mode grant (BB/R008639/1) supported M.M, all awarded to V.G. We thank Prof. Jasna Rakonjac for sharing materials and for many helpful discussions. For the pIV structural work, we acknowledge Diamond Light Source for access and support of the cryo-EM facilities at the UK’s national Electron Bio-imaging Centre (eBIC) [under proposal BI25452]. We acknowledge access and support of the GW4 Regional Facility for High-Resolution Electron Cryo-Microscopy, funded by the Wellcome Trust (202904/Z/16/Z and 206181/Z/17/Z) and BBSRC (BB/R000484/1). The deposited dataset was collected at eBIC, and the GW4 facility was used for sample screening. We are grateful to Ufuk Borucu of the GW4 Regional Facility for help with screening.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicki A. M. Gold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Conners, R., McLaren, M., Russel, M., Gold, V.A.M. (2024). Expression, Purification, and Cryo-EM Structural Analysis of an Outer Membrane Secretin Channel. In: Ieva, R. (eds) Transmembrane β-Barrel Proteins. Methods in Molecular Biology, vol 2778. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3734-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3734-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3733-3

  • Online ISBN: 978-1-0716-3734-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics