Skip to main content

Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems

  • Protocol
  • First Online:
Mammalian Synthetic Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2774))

Abstract

CRISPR-Cas effectors are powerful tools for genome and transcriptome targeting and editing. Naturally, these protein–RNA complexes are part of the microbial innate immune system, which emerged from the evolutionary arms race between microbes and phages. This coevolution has also given rise to so-called anti-CRISPR (Acr) proteins that counteract the CRISPR-Cas adaptive immunity. Acrs constitutively block cognate CRISPR-Cas effectors, e.g., by interfering with guide RNA binding, target DNA/RNA recognition, or target cleavage. In addition to their important role in microbiology and evolution, Acrs have recently gained particular attention for being useful tools and switches to regulate or fine-tune the activity of CRISPR-Cas effectors. Due to their commonly small size, high inhibition potency, and structural and mechanistic versatility, Acrs offer a wide range of potential applications for controlling CRISPR effectors in heterologous systems, including mammalian cells.

Here, we review the diverse applications of Acrs in mammalian cells and organisms and discuss the underlying engineering strategies. These applications include (i) persistent blockage of CRISPR-Cas function to create write-protected cells, (ii) reduction of CRISPR-Cas off-target editing, (iii) focusing CRISPR-Cas activity to specific cell types and tissues, (iv) spatiotemporal control of CRISPR effectors based on engineered, opto-, or chemogenetic Acrs, and (v) the use of Acrs for selective binding and detection of CRISPR-Cas effectors in complex samples. We will also highlight potential future applications of Acrs in a biomedical context and point out present challenges that need to be overcome on the way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed Central  Google Scholar 

  2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  Google Scholar 

  3. Brouns SJJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJH, Snijders APL, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964. https://doi.org/10.1126/science.1159689

    Article  CAS  PubMed Central  Google Scholar 

  4. Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. https://doi.org/10.1007/s00239-004-0046-3

    Article  CAS  Google Scholar 

  5. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed Central  Google Scholar 

  6. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed Central  Google Scholar 

  7. Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015) In vivo genome editing using Staphylococcus aureus Cas9. Nature 520:186–191. https://doi.org/10.1038/nature14299

    Article  CAS  PubMed Central  Google Scholar 

  8. Hou Z, Zhang Y, Propson NE, Howden SE, Chu L-F, Sontheimer EJ, Thomson JA (2013) Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A 110:15644–15649. https://doi.org/10.1073/pnas.1313587110

    Article  CAS  PubMed Central  Google Scholar 

  9. Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, Zhang F, Koonin EV (2015) Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 60:385–397. https://doi.org/10.1016/j.molcel.2015.10.008

    Article  CAS  PubMed Central  Google Scholar 

  10. Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, Koonin EV, Zhang F (2015) Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163:759–771. https://doi.org/10.1016/j.cell.2015.09.038

    Article  CAS  PubMed Central  Google Scholar 

  11. Zetsche B, Heidenreich M, Mohanraju P, Fedorova I, Kneppers J, DeGennaro EM, Winblad N, Choudhury SR, Abudayyeh OO, Gootenberg JS, Wu WY, Scott DA, Severinov K, van der Oost J, Zhang F (2017) Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat Biotechnol 35:31–34. https://doi.org/10.1038/nbt.3737

    Article  CAS  Google Scholar 

  12. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR–Cas13. Nature 550:280–284. https://doi.org/10.1038/nature24049

    Article  CAS  PubMed Central  Google Scholar 

  13. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027. https://doi.org/10.1126/science.aaq0180

    Article  CAS  PubMed Central  Google Scholar 

  14. Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844. https://doi.org/10.1038/s41587-020-0561-9

    Article  CAS  Google Scholar 

  15. Wang JY, Pausch P, Doudna JA (2022) Structural biology of CRISPR–Cas immunity and genome editing enzymes. Nat Rev Microbiol 20:641–656. https://doi.org/10.1038/s41579-022-00739-4

    Article  CAS  Google Scholar 

  16. Zhang F (2019) Development of CRISPR-Cas systems for genome editing and beyond. Q Rev Biophys 52:e6. https://doi.org/10.1017/S0033583519000052

    Article  Google Scholar 

  17. Bondy-Denomy J, Pawluk A, Maxwell KL, Davidson AR (2013) Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system. Nature 493:429–432. https://doi.org/10.1038/nature11723

    Article  CAS  Google Scholar 

  18. Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR (2015) Multiple mechanisms for CRISPR–Cas inhibition by anti-CRISPR proteins. Nature 526:136–139. https://doi.org/10.1038/nature15254

    Article  CAS  PubMed Central  Google Scholar 

  19. Pawluk A, Amrani N, Zhang Y, Garcia B, Hidalgo-Reyes Y, Lee J, Edraki A, Shah M, Sontheimer EJ, Maxwell KL, Davidson AR (2016) Naturally occurring off-switches for CRISPR-Cas9. Cell 167:1829–1838.e9. https://doi.org/10.1016/j.cell.2016.11.017

    Article  CAS  PubMed Central  Google Scholar 

  20. Rauch BJ, Silvis MR, Hultquist JF, Waters CS, McGregor MJ, Krogan NJ, Bondy-Denomy J (2017) Inhibition of CRISPR-Cas9 with bacteriophage proteins. Cell 168:150–158. https://doi.org/10.1016/j.cell.2016.12.009

    Article  CAS  Google Scholar 

  21. Bubeck F, Hoffmann MD, Harteveld Z, Aschenbrenner S, Bietz A, Waldhauer MC, Börner K, Fakhiri J, Schmelas C, Dietz L, Grimm D, Correia BE, Eils R, Niopek D (2018) Engineered anti-CRISPR proteins for optogenetic control of CRISPR–Cas9. Nat Methods 15:924–927. https://doi.org/10.1038/s41592-018-0178-9

    Article  CAS  Google Scholar 

  22. Forsberg KJ (2023) Anti-CRISPR discovery: using magnets to find needles in haystacks. J Mol Biol 167952. https://doi.org/10.1016/j.jmb.2023.167952

  23. Shehreen S, Birkholz N, Fineran PC, Brown CM (2022) Widespread repression of anti-CRISPR production by anti-CRISPR-associated proteins. Nucleic Acids Res 50:8615–8625. https://doi.org/10.1093/nar/gkac674

    Article  CAS  PubMed Central  Google Scholar 

  24. Stanley SY, Borges AL, Chen K-H, Swaney DL, Krogan NJ, Bondy-Denomy J, Davidson AR (2019) Anti-CRISPR-associated proteins are crucial repressors of anti-CRISPR transcription. Cell 178:1452–1464.e13. https://doi.org/10.1016/j.cell.2019.07.046

    Article  CAS  PubMed Central  Google Scholar 

  25. Eitzinger S, Asif A, Watters KE, Iavarone AT, Knott GJ, Doudna JA, Minhas F u AA (2020) Machine learning predicts new anti-CRISPR proteins. Nucleic Acids Res 48:4698–4708. https://doi.org/10.1093/nar/gkaa219

    Article  CAS  PubMed Central  Google Scholar 

  26. Gussow AB, Park AE, Borges AL, Shmakov SA, Makarova KS, Wolf YI, Bondy-Denomy J, Koonin EV (2020) Machine-learning approach expands the repertoire of anti-CRISPR protein families. Nat Commun 11:3784. https://doi.org/10.1038/s41467-020-17652-0

    Article  CAS  PubMed Central  Google Scholar 

  27. Wang J, Dai W, Li J, Xie R, Dunstan RA, Stubenrauch C, Zhang Y, Lithgow T (2020) PaCRISPR: a server for predicting and visualizing anti-CRISPR proteins. Nucleic Acids Res 48:W348–W357. https://doi.org/10.1093/nar/gkaa432

    Article  CAS  PubMed Central  Google Scholar 

  28. Yi H, Huang L, Yang B, Gomez J, Zhang H, Yin Y (2020) AcrFinder: genome mining anti-CRISPR operons in prokaryotes and their viruses. Nucleic Acids Res 48:W358–W365. https://doi.org/10.1093/nar/gkaa351

    Article  CAS  PubMed Central  Google Scholar 

  29. Zhu L, Wang X, Li F, Song J (2022) PreAcrs: a machine learning framework for identifying anti-CRISPR proteins. BMC Bioinform 23:444. https://doi.org/10.1186/s12859-022-04986-3

    Article  CAS  Google Scholar 

  30. Lin P, Qin S, Pu Q, Wang Z, Wu Q, Gao P, Schettler J, Guo K, Li R, Li G, Huang C, Wei Y, Gao GF, Jiang J, Wu M (2020) CRISPR-Cas13 inhibitors block RNA editing in bacteria and mammalian cells. Mol Cell 78:850–861.e5. https://doi.org/10.1016/j.molcel.2020.03.033

    Article  CAS  PubMed Central  Google Scholar 

  31. Johnson MC, Hille LT, Kleinstiver BP, Meeske AJ, Bondy-Denomy J (2022) Lack of Cas13a inhibition by anti-CRISPR proteins from Leptotrichia prophages. Mol Cell 82:2161–2166.e3. https://doi.org/10.1016/j.molcel.2022.05.002

    Article  CAS  PubMed Central  Google Scholar 

  32. Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B (2018) A unified resource for tracking anti-CRISPR names. CRISPR J 1:304–305. https://doi.org/10.1089/crispr.2018.0043

    Article  PubMed Central  Google Scholar 

  33. Dong C, Wang X, Ma C, Zeng Z, Pu D-K, Liu S, Wu C-S, Chen S, Deng Z, Guo F-B (2022) Anti-CRISPRdb v2.2: an online repository of anti-CRISPR proteins including information on inhibitory mechanisms, activities and neighbors of curated anti-CRISPR proteins. Database 2022:baac010. https://doi.org/10.1093/database/baac010

    Article  CAS  PubMed Central  Google Scholar 

  34. Dong D, Guo M, Wang S, Zhu Y, Wang S, Xiong Z, Yang J, Xu Z, Huang Z (2017) Structural basis of CRISPR–SpyCas9 inhibition by an anti-CRISPR protein. Nature 546:436–439. https://doi.org/10.1038/nature22377

    Article  CAS  Google Scholar 

  35. Yang H, Patel DJ (2017) Inhibition mechanism of an anti-CRISPR suppressor AcrIIA4 targeting SpyCas9. Mol Cell 67:117–127.e5. https://doi.org/10.1016/j.molcel.2017.05.024

    Article  CAS  PubMed Central  Google Scholar 

  36. Kim I, Jeong M, Ka D, Han M, Kim N-K, Bae E, Suh J-Y (2018) Solution structure and dynamics of anti-CRISPR AcrIIA4, the Cas9 inhibitor. Sci Rep 8:3883. https://doi.org/10.1038/s41598-018-22177-0

    Article  CAS  PubMed Central  Google Scholar 

  37. Kim Y, Lee SJ, Yoon H, Kim N, Lee B, Suh J (2019) Anti-CRISPR AcrIIC3 discriminates between Cas9 orthologs via targeting the variable surface of the HNH nuclease domain. FEBS J 286:4661–4674. https://doi.org/10.1111/febs.15037

    Article  CAS  Google Scholar 

  38. Sun W, Yang J, Cheng Z, Amrani N, Liu C, Wang K, Ibraheim R, Edraki A, Huang X, Wang M, Wang J, Liu L, Sheng G, Yang Y, Lou J, Sontheimer EJ, Wang Y (2019) Structures of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Mol Cell 76:938–952.e5. https://doi.org/10.1016/j.molcel.2019.09.025

    Article  CAS  PubMed Central  Google Scholar 

  39. Harrington LB, Doxzen KW, Ma E, Liu J-J, Knott GJ, Edraki A, Garcia B, Amrani N, Chen JS, Cofsky JC, Kranzusch PJ, Sontheimer EJ, Davidson AR, Maxwell KL, Doudna JA (2017) A broad-Spectrum inhibitor of CRISPR-Cas9. Cell 170:1224–1233.e15. https://doi.org/10.1016/j.cell.2017.07.037

    Article  CAS  PubMed Central  Google Scholar 

  40. Hynes AP, Rousseau GM, Lemay M-L, Horvath P, Romero DA, Fremaux C, Moineau S (2017) An anti-CRISPR from a virulent streptococcal phage inhibits streptococcus pyogenes Cas9. Nat Microbiol 2:1374–1380. https://doi.org/10.1038/s41564-017-0004-7

    Article  CAS  Google Scholar 

  41. Garcia B, Lee J, Edraki A, Hidalgo-Reyes Y, Erwood S, Mir A, Trost CN, Seroussi U, Stanley SY, Cohn RD, Claycomb JM, Sontheimer EJ, Maxwell KL, Davidson AR (2019) Anti-CRISPR AcrIIA5 potently inhibits all Cas9 homologs used for genome editing. Cell Rep 29:1739–1746.e5. https://doi.org/10.1016/j.celrep.2019.10.017

    Article  CAS  PubMed Central  Google Scholar 

  42. Song G, Zhang F, Zhang X, Gao X, Zhu X, Fan D, Tian Y (2019) AcrIIA5 inhibits a broad range of Cas9 orthologs by preventing DNA target cleavage. Cell Rep 29:2579–2589. https://doi.org/10.1016/j.celrep.2019.10.078

    Article  CAS  Google Scholar 

  43. Marino ND, Zhang JY, Borges AL, Sousa AA, Leon LM, Rauch BJ, Walton RT, Berry JD, Joung JK, Kleinstiver BP, Bondy-Denomy J (2018) Discovery of widespread type I and type V CRISPR-Cas inhibitors. Science 362:240–242. https://doi.org/10.1126/science.aau5174

    Article  CAS  PubMed Central  Google Scholar 

  44. Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA (2018) Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 362:236–239. https://doi.org/10.1126/science.aau5138

    Article  CAS  PubMed Central  Google Scholar 

  45. Meeske AJ, Jia N, Cassel AK, Kozlova A, Liao J, Wiedmann M, Patel DJ, Marraffini LA (2020) A phage-encoded anti-CRISPR enables complete evasion of type VI-A CRISPR-Cas immunity. Science 369:54–59. https://doi.org/10.1126/science.abb6151

    Article  CAS  PubMed Central  Google Scholar 

  46. Jia N, Patel DJ (2021) Structure-based functional mechanisms and biotechnology applications of anti-CRISPR proteins. Nat Rev Mol Cell Biol 22:563–579. https://doi.org/10.1038/s41580-021-00371-9

    Article  CAS  Google Scholar 

  47. Davidson AR, Lu W-T, Stanley SY, Wang J, Mejdani M, Trost CN, Hicks BT, Lee J, Sontheimer EJ (2020) Anti-CRISPRs: protein inhibitors of CRISPR-Cas systems. Annu Rev Biochem 89:309–332. https://doi.org/10.1146/annurev-biochem-011420-111224

    Article  CAS  PubMed Central  Google Scholar 

  48. Marino ND, Pinilla-Redondo R, Csörgő B, Bondy-Denomy J (2020) Anti-CRISPR protein applications: natural brakes for CRISPR-Cas technologies. Nat Methods 17:471–479. https://doi.org/10.1038/s41592-020-0771-6

    Article  CAS  PubMed Central  Google Scholar 

  49. Nakamura M, Srinivasan P, Chavez M, Carter MA, Dominguez AA, La Russa M, Lau MB, Abbott TR, Xu X, Zhao D, Gao Y, Kipniss NH, Smolke CD, Bondy-Denomy J, Qi LS (2019) Anti-CRISPR-mediated control of gene editing and synthetic circuits in eukaryotic cells. Nat Commun 10:194. https://doi.org/10.1038/s41467-018-08158-x

    Article  CAS  PubMed Central  Google Scholar 

  50. Basgall EM, Goetting SC, Goeckel ME, Giersch RM, Roggenkamp E, Schrock MN, Halloran M, Finnigan GC (2018) Gene drive inhibition by the anti-CRISPR proteins AcrIIA2 and AcrIIA4 in Saccharomyces cerevisiae. Microbiology 164:464–474. https://doi.org/10.1099/mic.0.000635

    Article  CAS  PubMed Central  Google Scholar 

  51. Taxiarchi C, Beaghton A, Don NI, Kyrou K, Gribble M, Shittu D, Collins SP, Beisel CL, Galizi R, Crisanti A (2021) A genetically encoded anti-CRISPR protein constrains gene drive spread and prevents population suppression. Nat Commun 12:3977. https://doi.org/10.1038/s41467-021-24214-5

    Article  CAS  PubMed Central  Google Scholar 

  52. Ibraheim R, Tai PWL, Mir A, Javeed N, Wang J, Rodríguez TC, Namkung S, Nelson S, Khokhar ES, Mintzer E, Maitland S, Chen Z, Cao Y, Tsagkaraki E, Wolfe SA, Wang D, Pai AA, Xue W, Gao G, Sontheimer EJ (2021) Self-inactivating, all-in-one AAV vectors for precision Cas9 genome editing via homology-directed repair in vivo. Nat Commun 12:6267. https://doi.org/10.1038/s41467-021-26518-y

    Article  CAS  PubMed Central  Google Scholar 

  53. Li A, Lee CM, Hurley AE, Jarrett KE, De Giorgi M, Lu W, Balderrama KS, Doerfler AM, Deshmukh H, Ray A, Bao G, Lagor WR (2019) A self-deleting AAV-CRISPR system for in vivo genome editing. Mol Ther Methods Clin Dev 12:111–122. https://doi.org/10.1016/j.omtm.2018.11.009

    Article  CAS  Google Scholar 

  54. Lee J, Mir A, Edraki A, Garcia B, Amrani N, Lou HE, Gainetdinov I, Pawluk A, Ibraheim R, Gao XD, Liu P, Davidson AR, Maxwell KL, Sontheimer EJ (2018) Potent Cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. mBio 9:e02321–18. https://doi.org/10.1128/mBio.02321-18

    Article  PubMed Central  Google Scholar 

  55. Amrani N, Gao XD, Liu P, Edraki A, Mir A, Ibraheim R, Gupta A, Sasaki KE, Wu T, Donohoue PD, Settle AH, Lied AM, McGovern K, Fuller CK, Cameron P, Fazzio TG, Zhu LJ, Wolfe SA, Sontheimer EJ (2018) NmeCas9 is an intrinsically high-fidelity genome-editing platform. Genome Biol 19:214. https://doi.org/10.1186/s13059-018-1591-1

    Article  CAS  PubMed Central  Google Scholar 

  56. Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63. https://doi.org/10.1038/nature26155

    Article  CAS  PubMed Central  Google Scholar 

  57. Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F (2016) Rationally engineered Cas9 nucleases with improved specificity. Science 351:84–88. https://doi.org/10.1126/science.aad5227

    Article  CAS  Google Scholar 

  58. Eslami-Mossallam B, Klein M, Smagt CVD, Sanden KVD, Jones SK, Hawkins JA, Finkelstein IJ, Depken M (2022) A kinetic model predicts SpCas9 activity, improves off-target classification, and reveals the physical basis of targeting fidelity. Nat Commun 13:1367. https://doi.org/10.1038/s41467-022-28994-2

    Article  CAS  PubMed Central  Google Scholar 

  59. Shin J, Jiang F, Liu J-J, Bray NL, Rauch BJ, Baik SH, Nogales E, Bondy-Denomy J, Corn JE, Doudna JA (2017) Disabling Cas9 by an anti-CRISPR DNA mimic. Sci Adv 3:e1701620. https://doi.org/10.1126/sciadv.1701620

    Article  CAS  PubMed Central  Google Scholar 

  60. Rees HA, Liu DR (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770–788. https://doi.org/10.1038/s41576-018-0059-1

    Article  CAS  PubMed Central  Google Scholar 

  61. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424. https://doi.org/10.1038/nature17946

    Article  CAS  PubMed Central  Google Scholar 

  62. Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017) Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551:464–471. https://doi.org/10.1038/nature24644

    Article  CAS  PubMed Central  Google Scholar 

  63. Grünewald J, Zhou R, Garcia SP, Iyer S, Lareau CA, Aryee MJ, Joung JK (2019) Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature 569:433–437. https://doi.org/10.1038/s41586-019-1161-z

    Article  CAS  PubMed Central  Google Scholar 

  64. Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H (2019) Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science 364:289–292. https://doi.org/10.1126/science.aav9973

    Article  CAS  PubMed Central  Google Scholar 

  65. Liu Y, Zhou C, Huang S, Dang L, Wei Y, He J, Zhou Y, Mao S, Tao W, Zhang Y, Yang H, Huang X, Chi T (2020) A Cas-embedding strategy for minimizing off-target effects of DNA base editors. Nat Commun 11:6073. https://doi.org/10.1038/s41467-020-19690-0

    Article  CAS  PubMed Central  Google Scholar 

  66. Liang M, Sui T, Liu Z, Chen M, Liu H, Shan H, Lai L, Li Z (2020) AcrIIA5 suppresses Base editors and reduces their off-target effects. Cell 9:1786. https://doi.org/10.3390/cells9081786

    Article  CAS  Google Scholar 

  67. Aschenbrenner S, Kallenberger SM, Hoffmann MD, Huck A, Eils R, Niopek D (2020) Coupling Cas9 to artificial inhibitory domains enhances CRISPR-Cas9 target specificity. Sci Adv 6:eaay0187. https://doi.org/10.1126/sciadv.aay0187

    Article  CAS  PubMed Central  Google Scholar 

  68. Álvarez MM, Biayna J, Supek F (2022) TP53-dependent toxicity of CRISPR/Cas9 cuts is differential across genomic loci and can confound genetic screening. Nat Commun 13:4520. https://doi.org/10.1038/s41467-022-32285-1

    Article  CAS  PubMed Central  Google Scholar 

  69. Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, Randhawa R, Kulkarni T, Yang Z, McAllister G, Russ C, Reece-Hoyes J, Forrester W, Hoffman GR, Dolmetsch R, Kaykas A (2018) p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 24:939–946. https://doi.org/10.1038/s41591-018-0050-6

    Article  CAS  Google Scholar 

  70. Li C, Psatha N, Gil S, Wang H, Papayannopoulou T, Lieber A (2018) HDAd5/35++ adenovirus vector expressing anti-CRISPR peptides decreases CRISPR/Cas9 toxicity in human hematopoietic stem cells. Mol Ther Methods Clin Dev 9:390–401. https://doi.org/10.1016/j.omtm.2018.04.008

    Article  CAS  PubMed Central  Google Scholar 

  71. Wang Y, Zhang G, Meng Q, Huang S, Guo P, Leng Q, Sun L, Liu G, Huang X, Liu J (2022) Precise tumor immune rewiring via synthetic CRISPRa circuits gated by concurrent gain/loss of transcription factors. Nat Commun 13:1454. https://doi.org/10.1038/s41467-022-29120-y

    Article  CAS  PubMed Central  Google Scholar 

  72. Kempton HR, Goudy LE, Love KS, Qi LS (2020) Multiple input sensing and signal integration using a Split Cas12a system. Mol Cell 78:184–191.e3. https://doi.org/10.1016/j.molcel.2020.01.016

    Article  CAS  Google Scholar 

  73. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5:522–531. https://doi.org/10.1038/nrg1379

    Article  CAS  Google Scholar 

  74. Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Blüthgen N, Marks DS, van Oudenaarden A (2015) MicroRNA control of protein expression noise. Science 348:128–132. https://doi.org/10.1126/science.aaa1738

    Article  CAS  Google Scholar 

  75. Hoffmann MD, Aschenbrenner S, Grosse S, Rapti K, Domenger C, Fakhiri J, Mastel M, Börner K, Eils R, Grimm D, Niopek D (2019) Cell-specific CRISPR–Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res 47:e75–e75. https://doi.org/10.1093/nar/gkz271

    Article  CAS  PubMed Central  Google Scholar 

  76. Hirosawa M, Fujita Y, Saito H (2019) Cell-type-specific CRISPR activation with MicroRNA-responsive AcrllA4 switch. ACS Synth Biol 8:1575–1582. https://doi.org/10.1021/acssynbio.9b00073

    Article  CAS  Google Scholar 

  77. Lee J, Mou H, Ibraheim R, Liang S-Q, Liu P, Xue W, Sontheimer EJ (2019) Tissue-restricted genome editing in vivo specified by microRNA-repressible anti-CRISPR proteins. RNA 25:1421–1431. https://doi.org/10.1261/rna.071704.119

    Article  CAS  PubMed Central  Google Scholar 

  78. Jain S, Xun G, Abesteh S, Ho S, Lingamaneni M, Martin TA, Tasan I, Yang C, Zhao H (2021) Precise regulation of Cas9-mediated genome engineering by anti-CRISPR-based inducible CRISPR controllers. ACS Synth Biol 10:1320–1327. https://doi.org/10.1021/acssynbio.0c00548

    Article  CAS  Google Scholar 

  79. Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV, Thapar V, Wyvekens N, Khayter C, Iafrate AJ, Le LP, Aryee MJ, Joung JK (2015) GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol 33:187–197. https://doi.org/10.1038/nbt.3117

    Article  CAS  Google Scholar 

  80. Matsumoto D, Tamamura H, Nomura W (2020) A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy. Commun Biol 3:601. https://doi.org/10.1038/s42003-020-01340-2

    Article  CAS  PubMed Central  Google Scholar 

  81. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, Ruth Vaseghi H, Qian L, Liu J (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7:2193. https://doi.org/10.1038/s41598-017-02460-2

    Article  CAS  PubMed Central  Google Scholar 

  82. Peck SH, Chen I, Liu DR (2011) Directed evolution of a small-molecule-triggered Intein with improved splicing properties in mammalian cells. Chem Biol 18:619–630. https://doi.org/10.1016/j.chembiol.2011.02.014

    Article  CAS  PubMed Central  Google Scholar 

  83. Song G, Zhang F, Tian C, Gao X, Zhu X, Fan D, Tian Y (2022) Discovery of potent and versatile CRISPR–Cas9 inhibitors engineered for chemically controllable genome editing. Nucleic Acids Res 50:2836–2853. https://doi.org/10.1093/nar/gkac099

    Article  CAS  PubMed Central  Google Scholar 

  84. Hoffmann MD, Mathony J, Upmeier zu Belzen J, Harteveld Z, Aschenbrenner S, Stengl C, Grimm D, Correia BE, Eils R, Niopek D (2021) Optogenetic control of Neisseria meningitidis Cas9 genome editing using an engineered, light-switchable anti-CRISPR protein. Nucleic Acids Res 49:e29–e29. https://doi.org/10.1093/nar/gkaa1198

    Article  CAS  Google Scholar 

  85. Mathony J, Harteveld Z, Schmelas C, Upmeier zu Belzen J, Aschenbrenner S, Sun W, Hoffmann MD, Stengl C, Scheck A, Georgeon S, Rosset S, Wang Y, Grimm D, Eils R, Correia BE, Niopek D (2020) Computational design of anti-CRISPR proteins with improved inhibition potency. Nat Chem Biol 16:725–730. https://doi.org/10.1038/s41589-020-0518-9

    Article  CAS  Google Scholar 

  86. Johnston RK, Seamon KJ, Saada EA, Podlevsky JD, Branda SS, Timlin JA, Harper JC (2019) Use of anti-CRISPR protein AcrIIA4 as a capture ligand for CRISPR/Cas9 detection. Biosens Bioelectron 141:111361. https://doi.org/10.1016/j.bios.2019.111361

    Article  CAS  Google Scholar 

  87. Phaneuf CR, Seamon KJ, Eckles TP, Sinha A, Schoeniger JS, Harmon B, Meagher RJ, Abhyankar VV, Koh C-Y (2019) Ultrasensitive multi-species detection of CRISPR-Cas9 by a portable centrifugal microfluidic platform. Anal Methods 11:559–565. https://doi.org/10.1039/C8AY02726A

    Article  CAS  PubMed Central  Google Scholar 

  88. Qiao J, Lin S, Sun W, Ma L, Liu Y (2020) A method for the quantitative detection of Cas12a ribonucleoproteins. Chem Commun 56:12616–12619. https://doi.org/10.1039/D0CC04019C

    Article  CAS  Google Scholar 

  89. Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843. https://doi.org/10.1038/nbt.2673

    Article  CAS  PubMed Central  Google Scholar 

  90. Mir A, Alterman JF, Hassler MR, Debacker AJ, Hudgens E, Echeverria D, Brodsky MH, Khvorova A, Watts JK, Sontheimer EJ (2018) Heavily and fully modified RNAs guide efficient SpyCas9-mediated genome editing. Nat Commun 9:2641. https://doi.org/10.1038/s41467-018-05073-z

    Article  CAS  PubMed Central  Google Scholar 

  91. Anishchenko I, Pellock SJ, Chidyausiku TM, Ramelot TA, Ovchinnikov S, Hao J, Bafna K, Norn C, Kang A, Bera AK, DiMaio F, Carter L, Chow CM, Montelione GT, Baker D (2021) De novo protein design by deep network hallucination. Nature 600:547–552. https://doi.org/10.1038/s41586-021-04184-w

    Article  CAS  PubMed Central  Google Scholar 

  92. Jendrusch M, Korbel JO, Sadiq SK (2021) AlphaDesign: a de novo protein design framework based on AlphaFold. bioRxiv. https://doi.org/10.1101/2021.10.11.463937

  93. Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl SAA, Ballard AJ, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior AW, Kavukcuoglu K, Kohli P, Hassabis D (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed Central  Google Scholar 

  94. Rihtar E, Lebar T, Lainšček D, Kores K, Lešnik S, Bren U, Jerala R (2023) Chemically inducible split protein regulators for mammalian cells. Nat Chem Biol 19:64–71. https://doi.org/10.1038/s41589-022-01136-x

    Article  CAS  Google Scholar 

  95. Shui S, Gainza P, Scheller L, Yang C, Kurumida Y, Rosset S, Georgeon S, Di Roberto RB, Castellanos-Rueda R, Reddy ST, Correia BE (2021) A rational blueprint for the design of chemically-controlled protein switches. Nat Commun 12:5754. https://doi.org/10.1038/s41467-021-25735-9

    Article  CAS  PubMed Central  Google Scholar 

  96. Hoffmann MD, Bubeck F, Eils R, Niopek D (2018) Controlling cells with light and LOV. Adv Biosys 2:1800098. https://doi.org/10.1002/adbi.201800098

    Article  Google Scholar 

  97. Shcherbakova DM, Shemetov AA, Kaberniuk AA, Verkhusha VV (2015) Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu Rev Biochem 84:519–550. https://doi.org/10.1146/annurev-biochem-060614-034411

    Article  CAS  PubMed Central  Google Scholar 

  98. Shcherbakova DM, Baloban M, Emelyanov AV, Brenowitz M, Guo P, Verkhusha VV (2016) Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat Commun 7:12405. https://doi.org/10.1038/ncomms12405

    Article  CAS  PubMed Central  Google Scholar 

  99. Jiang F, Liu J-J, Osuna BA, Xu M, Berry JD, Rauch BJ, Nogales E, Bondy-Denomy J, Doudna JA (2019) Temperature-responsive competitive inhibition of CRISPR-Cas9. Mol Cell 73:601–610.e5. https://doi.org/10.1016/j.molcel.2018.11.016

    Article  CAS  Google Scholar 

  100. Zhao Y, Hu J, Yang S-S, Zhong J, Liu J, Wang S, Jiao Y, Jiang F, Zhai R, Ren B, Cong H, Zhu Y, Han F, Zhang J, Xu Y, Huang Z, Zhang S, Yang F (2022) A redox switch regulates the assembly and anti-CRISPR activity of AcrIIC1. Nat Commun 13:7071. https://doi.org/10.1038/s41467-022-34551-8

    Article  CAS  PubMed Central  Google Scholar 

  101. Qin S, Liu Y, Chen Y, Hu J, Xiao W, Tang X, Li G, Lin P, Pu Q, Wu Q, Zhou C, Wang B, Gao P, Wang Z, Yan A, Nadeem K, Xia Z, Wu M (2022) Engineered bacteriophages containing anti-CRISPR suppress infection of antibiotic-Resistant P. aeruginosa. Microbiol Spectr 10:e01602–e01622. https://doi.org/10.1128/spectrum.01602-22

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the research group of Dominik Niopek for feedback on this manuscript. C.M.G. is a member of the Graduate School Life Science Engineering at TU Darmstadt. D.N. acknowledges funding by the German Research Foundation (DFG) [project no. 453202693], the Schwiete Stiftung, and the Aventis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Niopek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gebhardt, C.M., Niopek, D. (2024). Anti-CRISPR Proteins and Their Application to Control CRISPR Effectors in Mammalian Systems. In: Ceroni, F., Polizzi, K. (eds) Mammalian Synthetic Systems. Methods in Molecular Biology, vol 2774. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3718-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3718-0_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3717-3

  • Online ISBN: 978-1-0716-3718-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics