Skip to main content

RNA Switches Using Cas Proteins

  • Protocol
  • First Online:
Mammalian Synthetic Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2774))

  • 245 Accesses

Abstract

Expanding the number of available RNA-binding proteins (RBPs) is vital to establishing posttranscriptional circuits in mammalian cells. We focused on CRISPR-Cas systems and exploited Cas proteins for their versatility as RBPs. The translation of genes encoded in an mRNA becomes regulatable by a Cas protein by inserting a crRNA/sgRNA sequence recognizable by the specific Cas protein into its 5′UTR. These Cas protein-responsive switches vastly expand the available tools in synthetic biology because of the wide range of Cas protein orthologs that can be used as trigger proteins.

Here, we describe the design principle of Cas protein-responsive switches, both plasmid and RNA versions, using Streptococcus pyogenes Cas9 (SpCas9) as an example and show an example of its use in mammalian cells, HEK293FT cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

crRNA:

CRISPR RNA

mRNA:

messenger RNA

RBPs:

RNA-binding proteins

sgRNA:

single guide RNA

SpCas9:

Streptococcus pyogenes Cas9

tracrRNA:

trans-activating crRNA

UTR:

untranslated region

References

  1. Saito H, Kobayashi T, Hara T et al (2010) Synthetic translational regulation by an L7Ae-kink-turn RNP switch. Nat Chem Biol 6(1):71–78

    Article  CAS  Google Scholar 

  2. Kawasaki S, Fujita Y, Nagaike T et al (2017) Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells. Nucleic Acids Res 45(12):e117

    Article  CAS  PubMed Central  Google Scholar 

  3. Ausländer S, Ausländer D, Müller M et al (2012) Programmable single-cell mammalian biocomputers. Nature 487:123–127

    Article  Google Scholar 

  4. Wroblewska L, Kitada T, Endo K et al (2015) Mammalian synthetic circuits with RNA binding proteins for RNA-only delivery. Nat Biotechnol 33(8):839–841

    Article  CAS  PubMed Central  Google Scholar 

  5. Jinek M, Chylinski K, Fonfara I et al (2012) Programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed Central  Google Scholar 

  6. Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  CAS  Google Scholar 

  7. Kawasaki S, Ono H, Hirosawa M et al (2023) Programmable mammalian translational modulators by CRISPR-associated proteins. Nat Commun 14:2243

    Article  CAS  PubMed Central  Google Scholar 

  8. Ono H, Kawasaki S, Saito H (2020) Orthogonal protein-responsive mRNA switches for mammalian synthetic biology. ACS Synth Biol 9(1):169–174

    Article  CAS  Google Scholar 

  9. Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33(2):139–142

    Article  CAS  Google Scholar 

  10. Ma D, Peng S, Xie Z (2016) Integration and exchange of split dCas9 domains for transcriptional controls in mammalian cells. Nat Commun 7:13056

    Article  CAS  PubMed Central  Google Scholar 

  11. Endo K, Saito H (2014) Engineering protein-responsive mRNA switch in mammalian cells. Methods Mol Biol 1111:183–196

    Article  CAS  Google Scholar 

  12. Warren L, Manos PD, Ahfeldt T et al (2010) Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–630

    Article  CAS  PubMed Central  Google Scholar 

  13. Poleganov MA, Eminli S, Beissert T et al (2015) Efficient reprogramming of human fibroblasts and blood-derived endothelial progenitor cells using nonmodified RNA for reprogramming and immune evasion. Hum Gene Ther 26(11):751–766

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirohide Saito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hirosawa, M., Saito, H. (2024). RNA Switches Using Cas Proteins. In: Ceroni, F., Polizzi, K. (eds) Mammalian Synthetic Systems. Methods in Molecular Biology, vol 2774. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3718-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3718-0_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3717-3

  • Online ISBN: 978-1-0716-3718-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics