Skip to main content

A Biosensor Assay Based on Coiled-Coil-Mediated Human ACE2 Receptor Capture for the Analysis of Its Interactions with the SARS-CoV-2 Receptor Binding Domain

  • Protocol
  • First Online:
Recombinant Glycoproteins

Abstract

Surface plasmon resonance (SPR)-based biosensing enables the characterization of protein-protein interactions. Several SPR-based approaches have been designed to evaluate the binding mechanism between the angiotensin-converting enzyme 2 (ACE2) receptor and the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein leading to a large range of kinetic and thermodynamic constants. This chapter describes a robust SPR assay based on the K5/E5 coiled-coil capture strategy that reduces artifacts. In this method, ACE2 receptors were produced with an E5-tag and immobilized as ligands in the SPR assay. This chapter details methods for high-yield production and purification of the studied proteins, functionalization of the sensor chip, conduction of the SPR assay, and data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barton MI, MacGowan SA, Kutuzov MA et al (2021) Effects of common mutations in the SARS-CoV-2 spike RBD and its ligand, the human ACE2 receptor on binding affinity and kinetics. elife 10:e70658. https://doi.org/10.7554/eLife.70658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Laffeber C, de Koning K, Kanaar R et al (2021) Experimental evidence for enhanced receptor binding by rapidly spreading SARS-CoV-2 variants. J Mol Biol 433(15):167058. https://doi.org/10.1016/j.jmb.2021.167058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu H, Zhang Q, Wei P et al (2021) The basis of a more contagious 501Y.V1 variant of SARS-CoV-2. Cell Res 31(6):720–722. https://doi.org/10.1038/s41422-021-00496-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Crescenzo GD, Boucher C, Durocher Y et al (2008) Kinetic characterization by surface Plasmon resonance-based biosensors: principle and emerging trends. Cell Mol Bioeng 1(4):204–215. https://doi.org/10.1007/s12195-008-0035-5

    Article  CAS  Google Scholar 

  5. Forest-Nault C, Gaudreault J, Henry O et al (2021) On the use of surface Plasmon resonance biosensing to understand IgG-FcγR interactions. Int J Mol Sci 22. https://doi.org/10.3390/ijms22126616

  6. De Crescenzo G, Litowski JR, Hodges RS et al (2003) Real-time monitoring of the interactions of two-stranded de novo designed coiled-coils: effect of chain length on the kinetic and thermodynamic constants of binding. Biochemistry 42(6):1754–1763. https://doi.org/10.1021/bi0268450

    Article  CAS  PubMed  Google Scholar 

  7. Murschel F, Liberelle B, St-Laurent G et al (2013) Coiled-coil-mediated grafting of bioactive vascular endothelial growth factor. Acta Biomater 9(6):6806–6813. https://doi.org/10.1016/j.actbio.2013.02.032

    Article  CAS  PubMed  Google Scholar 

  8. Cambay F, Henry O, Durocher Y et al (2019) Impact of N-glycosylation on Fcγ receptor/IgG interactions: unravelling differences with an enhanced surface plasmon resonance biosensor assay based on coiled-coil interactions. MAbs 11(3):435–452. https://doi.org/10.1080/19420862.2019.1581017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Litowski JR, Hodges RS (2001) Designing heterodimeric two-stranded α-helical coiled-coils: the effect of chain length on protein folding, stability and specificity. J Pept Res 58(6):477–492. https://doi.org/10.1034/j.1399-3011.2001.10972.x

    Article  CAS  PubMed  Google Scholar 

  10. L’Abbé D, Bisson L, Gervais C et al (2018) Transient gene expression in suspension HEK293-EBNA1 cells. In: Hacker DL (ed) Recombinant protein expression in mammalian cells: methods and protocols. Springer, New York, pp 1–16

    Google Scholar 

  11. Poulain A, Perret S, Malenfant F et al (2017) Rapid protein production from stable CHO cell pools using plasmid vector and the cumate gene-switch. J Biotechnol 255:16–27. https://doi.org/10.1016/j.jbiotec.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  12. Stuible M, Burlacu A, Perret S et al (2018) Optimization of a high-cell-density polyethylenimine transfection method for rapid protein production in CHO-EBNA1 cells. J Biotechnol 281:39–47. https://doi.org/10.1016/j.jbiotec.2018.06.307

    Article  CAS  PubMed  Google Scholar 

  13. Rich RL, Myszka DG (2000) Advances in surface plasmon resonance biosensor analysis. Curr Opin Biotechnol 11(1):54–61. https://doi.org/10.1016/S0958-1669(99)00054-3

    Article  CAS  PubMed  Google Scholar 

  14. Forest-Nault C, Koyuturk I, Gaudreault J et al (2022) Impact of the temperature on the interactions between common variants of the SARS-CoV-2 receptor binding domain and the human ACE2. Sci Rep 12(1):11520. https://doi.org/10.1038/s41598-022-15215-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gregory De Crescenzo or Yves Durocher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Forest-Nault, C. et al. (2024). A Biosensor Assay Based on Coiled-Coil-Mediated Human ACE2 Receptor Capture for the Analysis of Its Interactions with the SARS-CoV-2 Receptor Binding Domain. In: Bradfute, S.B. (eds) Recombinant Glycoproteins. Methods in Molecular Biology, vol 2762. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3666-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3666-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3665-7

  • Online ISBN: 978-1-0716-3666-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics