Skip to main content

Understanding Actin Remodeling in Neuronal Cells Through Podosomes

  • Protocol
  • First Online:
Neuroprotection

Abstract

Cytoskeletal dysregulation forms an important aspect of many neurodegenerative diseases such as Alzheimer’s disease. Cytoskeletal functions require the dynamic activity of the cytoskeletal proteins—actin, tubulin, and the associated proteins. One of such important phenomena is that of actin remodeling, which helps the cell to migrate, navigate, and interact with extracellular materials. Podosomes are complex actin-rich cytoskeletal structures, abundant in proteins that interact and degrade the extracellular matrix, enabling cells to displace and migrate. The formation of podosomes requires extensive actin networks and remodeling. Here we present a novel immunofluorescence-based approach to study actin remodeling in neurons through the medium of podosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25:5789. https://doi.org/10.3390/molecules25245789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Brion JP, Couck AM, Passareiro E, Flament-Durand J (1985) Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol 17:89–96

    CAS  PubMed  Google Scholar 

  3. Chen Y, Fu AKY, Ip NY (2019) Synaptic dysfunction in Alzheimer’s disease: mechanisms and therapeutic strategies. Pharmacol Ther 195:186–198. https://doi.org/10.1016/j.pharmthera.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  4. Penzes P, VanLeeuwen J-E (2011) Impaired regulation of synaptic actin cytoskeleton in Alzheimer’s disease. Brain Res Rev 67:184–192. https://doi.org/10.1016/j.brainresrev.2011.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tracy TE, Gan L (2018) Tau-mediated synaptic and neuronal dysfunction in neurodegenerative disease. Curr Opin Neurobiol 51:134–138. https://doi.org/10.1016/j.conb.2018.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Das R, Chinnathambi S (2020) Actin-mediated microglial chemotaxis via G-protein coupled purinergic receptor in Alzheimer’s disease. Neuroscience 448:325–336. https://doi.org/10.1016/j.neuroscience.2020.09.024

    Article  CAS  PubMed  Google Scholar 

  7. Das R, Chinnathambi S (2021) Microglial remodeling of actin network by tau oligomers, via G protein-coupled purinergic receptor, P2Y12R-driven chemotaxis. Traffic 22:153–170. https://doi.org/10.1111/tra.12784

    Article  CAS  PubMed  Google Scholar 

  8. Bamburg JR, Bloom GS (2009) Cytoskeletal pathologies of Alzheimer disease. Cell Motil Cytoskeleton 66:635–649. https://doi.org/10.1002/cm.20388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muñoz-Lasso DC, Romá-Mateo C, Pallardó FV, Gonzalez-Cabo P (2020) Much more than a scaffold: cytoskeletal proteins in neurological disorders. Cell 9:358. https://doi.org/10.3390/cells9020358

    Article  CAS  Google Scholar 

  10. Vickers JC, Kirkcaldie MT, Phipps A, King AE (2016) Alterations in neurofilaments and the transformation of the cytoskeleton in axons may provide insight into the aberrant neuronal changes of Alzheimer’s disease. Brain Res Bull 126:324–333. https://doi.org/10.1016/j.brainresbull.2016.07.012

    Article  CAS  PubMed  Google Scholar 

  11. Khan AN (2012) Involvement of actin pathology in Alzheimer’s disease. Cell Dev Biol 2012:02. https://doi.org/10.4172/2168-9296.1000e121

    Article  Google Scholar 

  12. Gil-Henn H, Destaing O, Sims NA et al (2007) Defective microtubule-dependent podosome organization in osteoclasts leads to increased bone density in Pyk2−/− mice. J Cell Biol 178:1053–1064. https://doi.org/10.1083/jcb.200701148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Z, Hao K-M, Wang H-Y, Qi W-X (2020) Histone deacetylase-6 modulates amyloid beta-induced cognitive dysfunction rats by regulating PTK2B. Neuroreport 31:754–761. https://doi.org/10.1097/WNR.0000000000001481

    Article  CAS  PubMed  Google Scholar 

  14. Palazzo AF, Joseph HL, Chen Y-J et al (2001) Cdc42, dynein, and dynactin regulate MTOC reorientation independent of rho-regulated microtubule stabilization. Curr Biol 11:1536–1541. https://doi.org/10.1016/S0960-9822(01)00475-4

    Article  CAS  PubMed  Google Scholar 

  15. Gomes ER, Jani S, Gundersen GG (2005) Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 121:451–463. https://doi.org/10.1016/j.cell.2005.02.022

    Article  CAS  PubMed  Google Scholar 

  16. Weaver AM, Heuser JE, Karginov AV et al (2002) Interaction of Cortactin and N-WASp with Arp2/3 complex. Curr Biol 12:1270–1278. https://doi.org/10.1016/S0960-9822(02)01035-7

    Article  CAS  PubMed  Google Scholar 

  17. Nakanishi O, Suetsugu S, Yamazaki D, Takenawa T (2007) Effect of WAVE2 phosphorylation on activation of the Arp2/3 complex. J Biochem 141:319–325. https://doi.org/10.1093/jb/mvm034

    Article  CAS  PubMed  Google Scholar 

  18. Korobova F, Svitkina T (2008) Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. MBoC 19:1561–1574. https://doi.org/10.1091/mbc.e07-09-0964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. San Miguel-Ruiz JE, Letourneau PC (2014) The role of Arp2/3 in growth cone actin dynamics and guidance is substrate dependent. J Neurosci 34:5895–5908. https://doi.org/10.1523/JNEUROSCI.0672-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Qureshi T, Chinnathambi S (1869) Histone deacetylase-6 modulates tau function in Alzheimer’s disease. Biochimica et Biophysica Acta (BBA) Mol Cell Res 2022:119275. https://doi.org/10.1016/j.bbamcr.2022.119275

    Article  CAS  Google Scholar 

  21. Hurst IR, Zuo J, Jiang J, Holliday LS (2004) Actin-related protein 2/3 complex is required for actin ring formation. J Bone Miner Res 19:499–506. https://doi.org/10.1359/JBMR.0301238

    Article  CAS  PubMed  Google Scholar 

  22. Albiges-Rizo C, Destaing O, Fourcade B et al (2009) Actin machinery and mechanosensitivity in invadopodia, podosomes and focal adhesions. J Cell Sci 122:3037–3049. https://doi.org/10.1242/jcs.052704

    Article  CAS  PubMed  Google Scholar 

  23. Murphy DA, Courtneidge SA (2011) The “ins” and “outs” of podosomes and invadopodia: characteristics, formation and function. Nat Rev Mol Cell Biol 12:413–426. https://doi.org/10.1038/nrm3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Linder S, Aepfelbacher M (2003) Podosomes: adhesion hot-spots of invasive cells. Trends Cell Biol 13:376–385. https://doi.org/10.1016/S0962-8924(03)00128-4

    Article  CAS  PubMed  Google Scholar 

  25. Vincent C, Siddiqui TA, Schlichter LC (2012) Podosomes in migrating microglia: components and matrix degradation. J Neuroinflammation 9:190. https://doi.org/10.1186/1742-2094-9-190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Courtneidge SA, Azucena EF, Pass I et al (2005) The SRC substrate Tks5, podosomes (invadopodia), and cancer cell invasion. Cold Spring Harb Symp Quant Biol 70:167–171. https://doi.org/10.1101/sqb.2005.70.014

    Article  CAS  PubMed  Google Scholar 

  27. Iizuka S, Abdullah C, Buschman MD et al (2016) The role of Tks adaptor proteins in invadopodia formation, growth and metastasis of melanoma. Oncotarget 7:78473–78486. https://doi.org/10.18632/oncotarget.12954

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pęziński M, Maliszewska-Olejniczak K, Daszczuk P et al (2021) Tks5 regulates synaptic podosome formation and stabilization of the postsynaptic machinery at the neuromuscular junction. Int J Mol Sci 22:12051. https://doi.org/10.3390/ijms222112051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zambonin-Zallone A, Teti A, Grano M et al (1989) Immunocytochemical distribution of extracellular matrix receptors in human osteoclasts: a β3 integrin is colocalized with vinculin and talin in the podosomes of osteoclastoma giant cells. Exp Cell Res 182:645–652. https://doi.org/10.1016/0014-4827(89)90266-8

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project is supported by the in-house CSIR-National Chemical Laboratory grant MLP101726. The author is grateful to Chinnathambi’s lab members for their scientific suggestions on the manuscript. TQ acknowledges the Department of Science and Technology – Innovation in Science Pursuit for Inspired Research (DST-INSPIRE), the Government of India for her fellowship. The authors greatly acknowledge the Department of Neurochemistry, the National Institute of Mental Health and Neuro Sciences (NIMHANS), and the Institute of National Importance, Bangalore, for their internal support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subashchandrabose Chinnathambi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Qureshi, T., Desale, S.E., Chidambaram, H., Chinnathambi, S. (2024). Understanding Actin Remodeling in Neuronal Cells Through Podosomes. In: Ray, S.K. (eds) Neuroprotection. Methods in Molecular Biology, vol 2761. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3662-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3662-6_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3661-9

  • Online ISBN: 978-1-0716-3662-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics