Skip to main content

Genetic Network Design Automation with LOICA

  • Protocol
  • First Online:
Synthetic Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2760))

  • 400 Accesses

Abstract

Genetic design automation (GDA) is the use of computer-aided design (CAD) in designing genetic networks. GDA tools are necessary to create more complex synthetic genetic networks in a high-throughput fashion. At the core of these tools is the abstraction of a hierarchy of standardized components. The components’ input, output, and interactions must be captured and parametrized from relevant experimental data. Simulations of genetic networks should use those parameters and include the experimental context to be compared with the experimental results.

This chapter introduces Logical Operators for Integrated Cell Algorithms (LOICA), a Python package used for designing, modeling, and characterizing genetic networks using a simple object-oriented design abstraction. LOICA represents different biological and experimental components as classes that interact to generate models. These models can be parametrized by direct connection to the Flapjack experimental data management platform to characterize abstracted components with experimental data. The models can be simulated using stochastic simulation algorithms or ordinary differential equations with varying noise levels. The simulated data can be managed and published using Flapjack alongside experimental data for comparison. LOICA genetic network designs can be represented as graphs and plotted as networks for visual inspection and serialized as Python objects or in the Synthetic Biology Open Language (SBOL) format for sharing and use in other designs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Endy D (2005) Foundations for engineering biology. Nature 438(7067):449

    Google Scholar 

  2. Aldulijan I, Beal J, Billerbeck S, Bouffard J, Chambonnier G, Ntelkis N, Guerreiro I, Holub M, Ross P, Selvarajah V et al (2023) Functional synthetic biology.. Synth Biol 8(1):ysad006

    Google Scholar 

  3. McLaughlin JA, Beal J, Mısırlı G, Grünberg R, Bartley BA, Scott-Brown J, Vaidyanathan P, Fontanarrosa P, Oberortner E, Wipat A et al (2020) The synthetic biology open language (SBOL) version 3: simplified data exchange for bioengineering. Front Bioeng Biotechnol 8:1009

    Google Scholar 

  4. Mitchell T, Beal J, Bartley B (2022) pySBOL3: SBOL3 for python programmers. ACS Synth Biol 11(7):2523

    Google Scholar 

  5. McLaughlin JA, Myers CJ, Zundel Z, Mısırlı G, Zhang M, Ofiteru ID, Goni-Moreno A, Wipat A (2018) SynBioHub: a standards-enabled design repository for synthetic biology. ACS Synth Biol 7(2):682

    Google Scholar 

  6. Sents Z, Stoughton TE, Buecherl L, Thomas PJ, Fontanarrosa P, Myers CJ (2023) SynBioSuite: a tool for improving the workflow for genetic design and modeling. ACS Synth Biol 12(3):892

    Google Scholar 

  7. Crowther M, Wipat A, Goñi-Moreno Á (2022) A network approach to genetic circuit designs. ACS Synth Biol 11(9):3058

    Google Scholar 

  8. Jones TS, Oliveira SM, Myers CJ, Voigt CA, Densmore D (2022) Genetic circuit design automation with Cello 2.0. Nat Protoc 17(4):1097

    Google Scholar 

  9. Yáñez Feliú G, Earle Gómez B, Codoceo Berrocal V, Muñoz Silva M, Nuñez IN, Matute TF, Arce Medina A, Vidal G, Vitalis C, Dahlin J et al (2020) Flapjack: Data management and analysis for genetic circuit characterization. ACS Synth Biol 10(1):183

    Google Scholar 

  10. Samineni SP, Vidal G, Vitalis C, Feliú GY, Rudge TJ, Myers CJ, Mante J (2023) Experimental data connector (XDC): integrating the capture of experimental data and metadata using standard formats and digital repositories. ACS Synth Biol 12(4):1364

    Google Scholar 

  11. Vidal G, Vitalis C, Rudge TJ (2022) LOICA: Integrating models with data for genetic network design automation. ACS Synth Biol 11(5):1984

    Google Scholar 

  12. Bartley BA, Choi K, Samineni M, Zundel Z, Nguyen T, Myers CJ, Sauro HM (2018) pySBOL: a python package for genetic design automation and standardization. ACS Synth Biol 8(7):1515

    Google Scholar 

  13. Yeoh JW, Swainston N, Vegh P, Zulkower V, Carbonell P, Holowko MB, Peddinti G, Poh CL (2021) Synbiopython: an open-source software library for synthetic biology. Synth Biol 6:Article ysab001

    Google Scholar 

  14. Chapman B, Chang J (2000) Biopython: Python tools for computational biology. ACM Sigbio Newslett 20(2):15

    Google Scholar 

  15. Vidal G, Vitalis C, Muñoz Silva M, Castillo-Passi C, Yáñez Feliú G, Federici F, Rudge TJ (2022) Accurate characterization of dynamic microbial gene expression and growth rate profiles. Synth Biol 7(1):ysac020

    Google Scholar 

  16. Tamsir A, Tabor JJ, Voigt CA (2011) Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469(7329):212

    Google Scholar 

  17. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335

    Google Scholar 

  18. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microbiol 56(6):1875

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Rudge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Vidal, G., Vitalis, C., Matúte, T., Núñez, I., Federici, F., Rudge, T.J. (2024). Genetic Network Design Automation with LOICA. In: Braman, J.C. (eds) Synthetic Biology. Methods in Molecular Biology, vol 2760. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3658-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3658-9_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3657-2

  • Online ISBN: 978-1-0716-3658-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics