Skip to main content

Genetically Encoded Reporters to Monitor Hypoxia

  • Protocol
  • First Online:
Hypoxia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2755))

  • 294 Accesses

Abstract

Hypoxia resulting from an imbalance of oxygen availability and consumption defines a metabolic cellular state with a profound impact on developmental processes, tissue maintenance, and the development of pathologies. Fluorescence imaging using genetically encoded reporters enables hypoxia and oxygen imaging with cellular resolution. Thereby unrestricted visualization of hypoxic cells and regions essentially relies on the availability of oxygen-independent fluorescent proteins like UnaG, isolated from the Japanese freshwater eel. Here, we describe the application of recently developed members of a UnaG-based hypoxia reporter family to visualize oxygenation patterns by in vitro live-cell imaging and during the ex vivo analysis of intracranial xenografted tumors. Thus, the generation of stably transfected transgenic tumor cell lines, the in vitro calibration of the genetically encoded sensors, the surgical procedures for orthotopic xenografting of tumors in mice, and workflows for the respective sample preparation and microscopy are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roussakis E, Li Z, Nichols AJ et al (2015) Oxygen-sensing methods in biomedicine from the macroscale to the microscale. Angew Chem Int Ed 54(29):8340–8362. https://doi.org/10.1002/anie.201410646

    Article  CAS  Google Scholar 

  2. Papkovsky DB, Dmitriev RI (2018) Imaging of oxygen and hypoxia in cell and tissue samples. Cell Mol Life Sci: Springer International Publishing 75:2963–2980

    Article  CAS  PubMed  Google Scholar 

  3. Nunn A, Linder K, Strauss HW (1995) Nitroimidazoles and imaging hypoxia. Eur J Nucl Med 22:265–280

    Article  CAS  PubMed  Google Scholar 

  4. Apte S, Chin FT, Graves EE (2011) Molecular imaging of hypoxia: strategies for probe design and application. Curr Org Synth 8(4):593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kiyose K, Hanaoka K, Oushiki D et al (2010) Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc 132:15846–15848

    Article  CAS  PubMed  Google Scholar 

  6. Lecoq J, Parpaleix A, Roussakis E et al (2011) Simultaneous two-photon imaging of oxygen and blood flow in deep cerebral vessels. Nat Med: Nature Publishing Group 17(7):893–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Papkovsky DB, Dmitriev RI (2013) Biological detection by optical oxygen sensing. Chem Soc Rev 42:8700–8732

    Article  CAS  PubMed  Google Scholar 

  8. Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America: National Academy of Sciences 91:12501–12504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reid BG, Flynn GC (1997) Chromophore formation in green fluorescent protein. Biochemistry 36(22):6786–6791

    Article  CAS  PubMed  Google Scholar 

  10. Remington SJ (2006) Fluorescent proteins: maturation, photochemistry and photophysics. Curr Opin Struct Biol 16(6):714–721. https://doi.org/10.1016/j.sbi.2006.10.001

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi E, Takano T, Nomura Y et al (2006) In vivo oxygen imaging using green fluorescent protein. Am J Physiol Cell Physiol 291:C781–C7C7

    Article  CAS  PubMed  Google Scholar 

  12. Lidsky PV, Lukyanov KA, Misra T et al (2018) A genetically encoded fluorescent probe for imaging of oxygenation gradients in living Drosophila. Development 145:dev156257

    Article  PubMed  PubMed Central  Google Scholar 

  13. Misra T, Baccino-Calace M, Meyenhofer F et al (2017) A genetically encoded biosensor for visualising hypoxia responses in vivo. Biol Open: Company of Biologists 6:296

    CAS  PubMed  Google Scholar 

  14. Bauer N, Maisuls I, Pereira da Graca A et al (2023) Genetically encoded dual fluorophore reporters for graded oxygen-sensing in light microscopy. Biosens Bioelectron 221:114917. https://doi.org/10.1016/j.bios.2022.114917

    Article  CAS  PubMed  Google Scholar 

  15. Erapaneedi R, Belousov VV, Schäfers M et al (2016) A novel family of fluorescent hypoxia sensors reveal strong heterogeneity in tumor hypoxia at the cellular level. EMBO J: European Molecular Biology Organization 35:102–113

    Article  CAS  PubMed  Google Scholar 

  16. Péresse T, Gautier A (2019) Next-generation fluorogen-based reporters and biosensors for advanced bioimaging. Int J Mol Sci 20(24):6142. https://doi.org/10.3390/ijms20246142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Potzkei J, Kunze M, Drepper T et al (2012) Real-time determination of intracellular oxygen in bacteria using a genetically encoded FRET-based biosensor. BMC Biol 10:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumagai A, Ando R, Miyatake H et al (2013) A bilirubin-inducible fluorescent protein from eel muscle. Cell 153:1602–1611. https://doi.org/10.1016/J.CELL.2013.05.038

    Article  CAS  PubMed  Google Scholar 

  19. Shitashima Y, Shimozawa T, Kumagai A et al (2017) Two distinct fluorescence states of the ligand-induced green fluorescent protein UnaG. Biophys J: Cell Press 113:2805–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schmitz C, Pepelanova I, Seliktar D et al (2020) Live reporting for hypoxia: hypoxia sensor-modified mesenchymal stem cells as in vitro reporters. Biotechnol Bioeng 117(11):3265–3276. https://doi.org/10.1002/bit.27503

    Article  CAS  PubMed  Google Scholar 

  21. Schmitz C, Potekhina E, Belousov VV et al (2021) Hypoxia onset in mesenchymal stem cell spheroids: monitoring with hypoxia reporter cells. Front Bioeng Biotechnol 9:611837. https://doi.org/10.3389/fbioe.2021.611837

    Article  PubMed  PubMed Central  Google Scholar 

  22. Panicucci G, Iacopino S, De Meo E et al (2020) An improved HRPE-based transcriptional output reporter to detect hypoxia and anoxia in plant tissue. Biosensors 10(12):197. https://doi.org/10.3390/bios10120197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reimche I, Yu H, Ariantari NP et al (2022) Phenanthroindolizidine alkaloids isolated from Tylophora ovata as potent inhibitors of inflammation, spheroid growth, and invasion of triple-negative breast cancer. Int J Mol Sci 23(18):10319. https://doi.org/10.3390/ijms231810319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Semenza GL, Nejfelt MK, Chi SM et al (1991) Hypoxia-inducible nuclear factors bind to an enhancer element located 3′ to the human erythropoietin gene. Proc Natl Acad Sci U S A: National Academy of Sciences 88:5680–5684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shibata T, Giaccia AJ, Brown JM (2000) Development of a hypoxia-responsive vector for tumor-specific gene therapy. Gene Therapy: Nature Publishing Group 7:493–498

    Article  CAS  PubMed  Google Scholar 

  26. Wenger RH, Stiehl DP, Camenisch G (2005) Integration of oxygen signaling at the consensus HRE. Sci STKE 2005(306):re12. https://doi.org/10.1126/stke.3062005re12. PMID: 16234508

    Article  PubMed  Google Scholar 

  27. Fandrey J, Gorr T, Gassmann M (2006) Regulating cellular oxygen sensing by hydroxylation. Cardiovasc Res 71(4):642–651. https://doi.org/10.1016/j.cardiores.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  28. Semenza GL (2011) Oxygen sensing, homeostasis, and disease. N Engl J Med 365(6):537–547. https://doi.org/10.1056/NEJMra1011165

    Article  CAS  PubMed  Google Scholar 

  29. Dengler VL, Galbraith MD, Espinosa JM (2014) Transcriptional regulation by hypoxia inducible factors. Crit Rev Biochem Mol Biol 49(1):1–15. https://doi.org/10.3109/10409238.2013.838205

    Article  CAS  PubMed  Google Scholar 

  30. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem: American Society for Biochemistry and Molecular Biology 272:22642–22647

    Article  CAS  PubMed  Google Scholar 

  31. Rogers S, Wells R, Rechsteiner M (1986) Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234(4774):364–368. https://doi.org/10.1126/science.2876518. PMID: 2876518

  32. Li X, Zhao X, Fang Y et al (1998) Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 273:34970–34975

    Article  CAS  PubMed  Google Scholar 

  33. Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467. https://doi.org/10.1016/0042-6822(73)90341-3

    Article  CAS  PubMed  Google Scholar 

  34. Southern PJ, Berg P (1982) Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1(4):327–341

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Raghu Erapaneedi (EIMI, WWU) by contributing a microscopy image (Fig. 6b), by Dirk Reinhardt (EIMI, WWU) by performing the intracranial tumor injections, and by Martin Stehling (Flow cytometry-Unit, MPI Münster) with expert technical support. We gratefully acknowledge funding by the Deutsche Forschungsgemeinschaft (SFB1450/1-431460824) and by the Studienstiftung des Deutschen Volkes to Nadine Bauer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann Kiefer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bauer, N., Kiefer, F. (2024). Genetically Encoded Reporters to Monitor Hypoxia. In: Gilkes, D.M. (eds) Hypoxia. Methods in Molecular Biology, vol 2755. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3633-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3633-6_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3632-9

  • Online ISBN: 978-1-0716-3633-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics