Skip to main content

Detecting and Validating MAPT Mutations in Neurodegeneration Patients and Analysis of Exon Splicing Consequences

  • Protocol
  • First Online:
Tau Protein

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2754))

Abstract

Mutation of MAPT has been observed in patients with parkinsonism, progressive supranuclear palsy, and corticobasal degeneration and is a significant cause of frontotemporal dementia. In this chapter, we discuss considerations for next-generation sequencing analysis to identify MAPT mutations in patient genomic DNA and describe the validation of these mutations by Sanger sequencing. One of the most common effects of MAPT mutations is differential splicing of exon 10, which leads to an imbalance in the proportion of 3-repeat and 4-repeat tau isoforms. We describe how to investigate the effect of novel DNA variants on the splicing efficiency of this exon in vitro using the exon-trapping technique, also known as the splicing reporter minigene assay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hutton M, Lendon CL, Rizzu P et al (1998) Association of missense and 5′-splice-site mutations in Tau with the inherited dementia FTDP-17. Nature 393:702–705

    Article  CAS  PubMed  Google Scholar 

  2. Strang KH, Golde TE, Giasson BI (2019) MAPT mutations, tauopathy, and mechanisms of neurodegeneration. Lab Investig 99:912–928

    Article  PubMed  Google Scholar 

  3. Kertesz A (2003) Pick’s complex and FTDP-17. Mov Disord 18(Suppl 6):S57–S62

    Article  PubMed  Google Scholar 

  4. Rohrer JD, Warren JD (2011) Phenotypic signatures of genetic frontotemporal dementia. Curr Opin Neurol 24:542–549

    Article  PubMed  Google Scholar 

  5. Chen Z, Chen JA, Shatunov A et al (2019) Genome-wide survey of copy number variants finds MAPT duplications in progressive supranuclear palsy. Mov Disord 34:1049–1059

    Article  CAS  PubMed  Google Scholar 

  6. Wallon D, Boluda S, Rovelet-Lecrux A et al (2021) Clinical and neuropathological diversity of tauopathy in MAPT duplication carriers. Acta Neuropathol 142:259–278

    Article  CAS  PubMed  Google Scholar 

  7. Pittman AM, Myers AJ, Duckworth J et al (2004) The structure of the tau haplotype in controls and in progressive supranuclear palsy. Hum Mol Genet 13:1267–1274

    Article  CAS  PubMed  Google Scholar 

  8. Nalls MA, Blauwendraat C, Vallerga CL et al (2019) Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol 18:1091–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heckman MG, Brennan RR, Labbe C et al (2019) Association of MAPT subhaplotypes with risk of progressive supranuclear palsy and severity of Tau pathology. JAMA Neurol 76:710–717

    Article  PubMed  PubMed Central  Google Scholar 

  10. Desikan RS, Schork AJ, Wang Y et al (2015) Genetic overlap between Alzheimer’s disease and Parkinson’s disease at the MAPT locus. Mol Psychiatry 20:1588–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shaw-Smith C, Pittman AM, Willatt L et al (2006) Microdeletion encompassing MAPT at chromosome 17q21.3 is associated with developmental delay and learning disability. Nat Genet 38:1032–1037

    Article  CAS  PubMed  Google Scholar 

  12. Dobson-Stone C, Kwok JB (2017) Finding MAPT mutations in frontotemporal dementia and other Tauopathies. Methods Mol Biol 1523:307–324

    Article  CAS  PubMed  Google Scholar 

  13. Rexach J, Lee H, Martinez-Agosto JA et al (2019) Clinical application of next-generation sequencing to the practice of neurology. Lancet Neurol 18:492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D’Souza I, Poorkaj P, Hong M et al (1999) Missense and silent tau gene mutations cause frontotemporal dementia with parkinsonism-chromosome 17 type, by affecting multiple alternative RNA splicing regulatory elements. Proc Natl Acad Sci U S A 96:5598–5603

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kukurba KR, Montgomery SB (2015) RNA sequencing and analysis. Cold Spring Harb Protoc 2015:951–969

    Article  PubMed  PubMed Central  Google Scholar 

  16. Olszewska DA, Fearon C, McGuigan C et al (2021) A clinical, molecular genetics and pathological study of a FTDP-17 family with a heterozygous splicing variant c.823-10G>T at the intron 9/exon 10 of the MAPT gene. Neurobiol Aging 106:343 e341–343 e348

    Article  Google Scholar 

  17. Apel TW, Scherer A, Adachi T et al (1995) The ribose 5-phosphate isomerase-encoding gene is located immediately downstream from that encoding murine immunoglobulin kappa. Gene 156:191–197

    Article  CAS  PubMed  Google Scholar 

  18. Buckler AJ, Chang DD, Graw SL et al (1991) Exon amplification: a strategy to isolate mammalian genes based on RNA splicing. Proc Natl Acad Sci U S A 88:4005–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164

    Article  PubMed  PubMed Central  Google Scholar 

  20. McLaren W, Gil L, Hunt SE et al (2016) The Ensembl variant effect predictor. Genome Biol 17:122

    Article  PubMed  PubMed Central  Google Scholar 

  21. Heldenbrand JR, Baheti S, Bockol MA et al (2019) Recommendations for performance optimizations when using GATK3.8 and GATK4. BMC Bioinformatics 20:557

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kleinert P, Martin B, Kircher M (2020) HemoMIPs-automated analysis and result reporting pipeline for targeted sequencing data. PLoS Comput Biol 16:e1007956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Malkani R, D’Souza I, Gwinn-Hardy K et al (2006) A MAPT mutation in a regulatory element upstream of exon 10 causes frontotemporal dementia. Neurobiol Dis 22:401–403

    Article  CAS  PubMed  Google Scholar 

  24. Qian W, Liu F (2014) Regulation of alternative splicing of tau exon 10. Neurosci Bull 30:367–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  PubMed  Google Scholar 

  26. Stenson PD, Mort M, Ball EV et al (2020) The Human Gene Mutation Database (HGMD((R))): optimizing its use in a clinical diagnostic or research setting. Hum Genet 139:1197–1207

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stanford PM, Shepherd CE, Halliday GM et al (2003) Mutations in the tau gene that cause an increase in three repeat tau and frontotemporal dementia. Brain 126:814–826

    Article  PubMed  Google Scholar 

  28. Pickering-Brown SM, Baker M, Gass J et al (2006) Mutations in progranulin explain atypical phenotypes with variants in MAPT. Brain 129:3124–3126

    Article  PubMed  Google Scholar 

  29. Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17:405–424

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wang K, Li M, Hadley D et al (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fang L, Wang K (2018) Identification of copy number variants from SNP arrays using PennCNV. Methods Mol Biol 1833:1–28

    Article  CAS  PubMed  Google Scholar 

  32. Ye K, Schulz MH, Long Q et al (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Fan X, Abbott TE, Larson D et al (2014) BreakDancer: identification of genomic structural variation from paired-end read mapping. Curr Protoc Bioinformatics 45:15.16.11–15.16.11

    Article  Google Scholar 

  34. Deng L, Tang X, Hao X et al (2011) Genetic flux between h1 and h2 haplotypes of the 17q21.31 inversion in European population. Genomics Proteomics Bioinformatics 9:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Huddleston J, Ranade S, Malig M et al (2014) Reconstructing complex regions of genomes using long-read sequencing technology. Genome Res 24:688–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen Y, Huang L, Jiao X et al (2018) A novel LRAT mutation affecting splicing in a family with early onset retinitis pigmentosa. Hum Genomics 12:35

    Article  PubMed  PubMed Central  Google Scholar 

  38. Putscher E, Hecker M, Fitzner B et al (2021) Principles and practical considerations for the analysis of disease-associated alternative splicing events using the gateway cloning-based minigene vectors pDESTsplice and pSpliceExpress. Int J Mol Sci 22:5154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Disclaimer

B.G. is a director of the Pacific Analytics PTY LTD & SMRTR PTY LTD, Australia, a founding member of the International Cerebral Palsy Genetics Consortium, and a member of the Australian Genomics Health Alliance. These bodies had no role in the design, execution, analysis, or preparation of the manuscript. The authors declare that they have no conflicts of interest with the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol Dobson-Stone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dobson-Stone, C., Guennewig, B., Mundell, H., Kwok, J.B. (2024). Detecting and Validating MAPT Mutations in Neurodegeneration Patients and Analysis of Exon Splicing Consequences. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 2754. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3629-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3629-9_22

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3628-2

  • Online ISBN: 978-1-0716-3629-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics