Skip to main content

Methods for Studying Swimming and Surface Motilities in Rhizobia

  • Protocol
  • First Online:
Host-Pathogen Interactions

Abstract

Rhizobia are soil proteobacteria able to establish a nitrogen-fixing interaction with legumes. In this interaction, rhizobia must colonize legume roots, infect them, and become hosted inside new organs formed by the plants and called nodules. Rhizobial motility, not being essential for symbiosis, might affect the degree of success of the interaction with legumes. Because of this, the study of rhizobial motility (either swimming or surface motility) might be of interest for research teams working on rhizobial symbiotic performance. In this chapter, we describe the protocols we use in our laboratories for studying the different types of motilities exhibited by Sinorhizobium fredii and Sinorhizobium meliloti, as well as for analyzing the presence of flagella in these bacteria. All these protocols might be used (or adapted) for studying bacterial motility in rhizobia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roy S, Liu W, Nandety RS et al (2020) Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32:15–41

    Article  CAS  PubMed  Google Scholar 

  2. Yang J, Lan L, Jin Y et al (2022) Mechanisms underlying legume-rhizobium symbioses. J Integr Plant Biol 64:244–267

    Article  PubMed  Google Scholar 

  3. López-Baena FJ, Ruiz-Sainz JE, Rodríguez-Carvajal MA, Vinardell JM (2016) Molecular signals in the Sinorhizobium fredii soybean symbiosis. Int J Mol Sci 17:E755

    Article  Google Scholar 

  4. Jiménez-Guerrero I, Medina C, Vinardell JM et al (2022) The rhizobial type 3 secretion system: the Dr. Jekyll and Mr. Hyde in the Rhizobium-legume symbiosis. Int J Mol Sci 23:11089

    Article  PubMed  PubMed Central  Google Scholar 

  5. Poole P, Ramachandran V, Terpolilli J (2018) Rhizobia: From saprophytes to endosymbionts. Nat Rev Microbiol 16:291–303

    Article  CAS  PubMed  Google Scholar 

  6. Aroney STN, Poole PS, Sánchez-Cañizares C (2021) Rhizobial chemotaxis and motility systems at work in the soil. Front Plant Sci 12:725338

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wadhwa N, Berg HC (2022) Bacterial motility: machinery and mechanisms. Nat Rev Microbiol 20:161–173

    Article  CAS  PubMed  Google Scholar 

  8. Soto MJ, Fernández-Pascual M, Sanjuán J, Olivares J (2002) A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots. Mol Microbiol 43:371–382

    Article  CAS  PubMed  Google Scholar 

  9. Daniels R, Reynaert S, Hoekstra H et al (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A 103:14965–14970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tambalo DD, Yost CK, Hynes MF (2010) Characterization of swarming motility in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 307:165–174

    Article  CAS  PubMed  Google Scholar 

  11. Nogales J, Bernabéu-Roda L, Cuéllar V, Soto MJ (2012) ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol 194:2027–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Covelli JM, Althabegoiti MJ, López MF, Lodeiro AR (2013) Swarming motility in Bradyrhizobium japonicum. Res Microbiol 164:136–144

    Article  CAS  PubMed  Google Scholar 

  13. Tambalo DD, Vanderlinde EM, Robinson S et al (2014) Legume seed exudates and Physcomitrella patens extracts influence swarming behaviour in Rhizobium leguminosarum. Can J Microbiol 60:15–24

    Article  CAS  PubMed  Google Scholar 

  14. Peláez-Vico MA, Bernabéu L, Kohlen W et al (2016) Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci 246:119–127

    Article  Google Scholar 

  15. Alías-Villegas C, Fuentes-Romero F, Cuéllar V et al (2022) Surface motility regulation of Sinorhizobium fredii HH103 by plant flavonoids and the NodD1, TtsI, NolR, and MucR1 symbiotic bacterial regulators. Int J Mol Sci 23:7698

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bernabéu-Roda LM, López-Ráez JA, Soto MJ (2021) Analyzing the effect of strigolactones on the motility behavior of Rhizobia. In: Prandi C, Cardinale F (eds) Strigolactones. Methods in molecular biology, vol 2309. Humana, New York, pp 91–103

    Google Scholar 

  17. Ames P, Schluederberg SA, Bergman K (1980) Behavioral mutants of Rhizobium meliloti. J Bacteriol 141:722–727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Margaret I, Becker A, Blom J et al (2011) Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J Biotechnol 155:11–19

    Article  CAS  PubMed  Google Scholar 

  19. Fuentes-Romero F, Moyano-Bravo I, Ayala-García P et al (2023) Non-ionic osmotic stress induces the biosynthesis of nodulation factors and affects other symbiotic traits in Sinorhizobium fredii HH103. Biology 12:148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bernabéu-Roda L, Calatrava-Morales N, Cuéllar V, Soto M (2015) Characterization of surface motility in Sinorhizobium meliloti: regulation and role in symbiosis. Symbiosis 67:1–12

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants PID2019-107634RB-I00 and PID2021-123540NB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and “ERDF A way of making Europe,” US-1250546 funded by FEDER/Universidad de Sevilla,and grant P20_00225 from “Consejería de Economía, Conocimiento, Empresas y Universidad” (Junta de Andalucía, PAIDI 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Vinardell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fuentes-Romero, F. et al. (2024). Methods for Studying Swimming and Surface Motilities in Rhizobia. In: Medina, C., López-Baena, F.J. (eds) Host-Pathogen Interactions. Methods in Molecular Biology, vol 2751. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3617-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3617-6_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3616-9

  • Online ISBN: 978-1-0716-3617-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics