Skip to main content

Intravital Microscopy to Study the Effect of Matrix Metalloproteinase Inhibition on Acute Myeloid Leukemia Cell Migration in the Bone Marrow

  • Protocol
  • First Online:
Proteases and Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2747))

  • 452 Accesses

Abstract

Hematopoiesis is the process through which all mature blood cells are formed and takes place in the bone marrow (BM). Acute myeloid leukemia (AML) is a blood cancer of the myeloid lineage. AML progression causes drastic remodeling of the BM microenvironment, making it no longer supportive of healthy hematopoiesis and leading to clinical cytopenia in patients. Understanding the mechanisms by which AML cells shape the BM to their benefit would lead to the development of new therapeutic strategies. While the role of extracellular matrix (ECM) in solid cancer has been extensively studied during decades, its role in the BM and in leukemia progression has only begun to be acknowledged. In this context, intravital microscopy (IVM) gives the unique insight of direct in vivo observation of AML cell behavior in their environment during disease progression and/or upon drug treatments. Here we describe our protocol for visualizing and analyzing MLL-AF9 AML cell dynamics upon systemic inhibition of matrix metalloproteinases (MMP), combining confocal and two-photon microscopy and focusing on cell migration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Minsky M (1988) Memoir on inventing the confocal scanning microscope. Scanning 10:128–138

    Article  Google Scholar 

  2. Gannaway JN, Sheppard CJR (1978) Second-harmonic imaging in the scanning optical microscope. Opt Quant Electron 10:435–439

    Article  CAS  Google Scholar 

  3. Elliott AD (2020) Confocal microscopy: principles and modern practices. Curr Protoc Cytom 92:e68

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pendleton EG, Tehrani KF, Barrow RP, Mortensen LJ (2020) Second harmonic generation characterization of collagen in whole bone. Biomed Opt Express 11:4379–4396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Débarre D, Supatto W, Pena A-M et al (2006) Imaging lipid bodies in cells and tissues using third-harmonic generation microscopy. Nat Methods 3:47–53

    Article  PubMed  Google Scholar 

  6. Lo Celso C, Fleming HE, Wu JW et al (2009) Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature 457:92–96

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins ED, Duarte D, Akinduro O et al (2016) T-cell acute leukaemia exhibits dynamic interactions with bone marrow microenvironments. Nature 538:518–522

    Article  PubMed  PubMed Central  Google Scholar 

  8. Duarte D, Hawkins ED, Akinduro O et al (2018) Inhibition of endosteal vascular niche Remodeling rescues hematopoietic stem cell loss in AML. Cell Stem Cell 22:64–77.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haltalli MLR, Watcham S, Wilson NK et al (2020) Manipulating niche composition limits damage to haematopoietic stem cells during plasmodium infection. Nat Cell Biol 22:1399–1410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zanetti C, Krause DS (2020) “Caught in the net”: the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Exp Hematol 89:13–25

    Article  CAS  PubMed  Google Scholar 

  11. Muiznieks LD, Keeley FW (2013) Molecular assembly and mechanical properties of the extracellular matrix: a fibrous protein perspective. Biochim Biophys Acta Mol basis Dis 1832:866–875

    Article  CAS  Google Scholar 

  12. Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shin J-W, Spinler KR, Swift J et al (2011) Differentiation of hematopoietic stem cell modulated by actomyosin forces. Biophys J 100:442a–443a

    Article  Google Scholar 

  14. Shin J-W, Swift J, Ivanovska I et al (2013) Mechanobiology of bone marrow stem cells: from myosin-II forces to compliance of matrix and nucleus. Differentiation 86:77–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shin J-W, Mooney DJ (2016) Extracellular matrix stiffness causes systematic variations in proliferation and chemosensitivity in myeloid leukemias. Proc Natl Acad Sci U S A 113:12126–12131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Verma D, Zanetti C, Godavarthy PS et al (2020) Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-cell acute lymphoblastic leukemia. Leukemia 34:1540–1552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pirillo C, Birch F, Tissot FS et al (2022) Metalloproteinase inhibition reduces AML growth, prevents stem cell loss, and improves chemotherapy effectiveness. Blood Adv 6:3126–3141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Page-McCaw A, Ewald AJ, Werb Z (2007) Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol 8:221–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Preibisch S, Saalfeld S, Schindelin J et al (2010) Software for bead-based registration of selective plane illumination microscopy data. Nat Methods 7:418–419

    Article  CAS  PubMed  Google Scholar 

  20. Laine RF, Tosheva KL, Gustafsson N et al (2019) NanoJ: a high-performance open-source super-resolution microscopy toolbox. J Phys D Appl Phys 52:163001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Multiview-reconstruction. In: ImageJ Wiki. https://imagej.github.io/plugins/multiview-reconstruction. Accessed 2 Feb 2023

  22. Fast4DReg. In: ImageJ Wiki. https://imagej.github.io/plugins/fast4dreg. Accessed 2 Feb 2023

  23. Young K, Eudy E, Bell R et al (2021) Decline in IGF1 in the bone marrow microenvironment initiates hematopoietic stem cell aging. Cell Stem Cell 28:1473–1482.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Young K, Borikar S, Bell R et al (2016) Progressive alterations in multipotent hematopoietic progenitors underlie lymphoid cell loss in aging. J Exp Med 213:2259–2267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Saçma M, Pospiech J, Bogeska R et al (2019) Haematopoietic stem cells in perisinusoidal niches are protected from ageing. Nat Cell Biol 21:1309–1320

    Article  PubMed  Google Scholar 

  26. Maryanovich M, Zahalka AH, Pierce H et al (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med 24:782–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822

    Article  CAS  PubMed  Google Scholar 

  28. PubChem Prinomastat. https://pubchem.ncbi.nlm.nih.gov/compound/466151. Accessed 23 Jan 2023

  29. Freund I, Deutsch M (1986) Second-harmonic microscopy of biological tissue. Opt Lett 11:94–96

    Article  CAS  PubMed  Google Scholar 

  30. Houle M-A, Couture C-A, Bancelin S et al (2015) Analysis of forward and backward second harmonic generation images to probe the nanoscale structure of collagen within bone and cartilage. J Biophoton 8:993–1001

    Article  CAS  Google Scholar 

  31. Akinduro O, Weber TS, Ang H et al (2018) Proliferation dynamics of acute myeloid leukaemia and haematopoietic progenitors competing for bone marrow space. Nat Commun 9:519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Miraki-Moud F, Anjos-Afonso F, Hodby KA et al (2013) Acute myeloid leukemia does not deplete normal hematopoietic stem cells but induces cytopenias by impeding their differentiation. PNAS. https://doi.org/10.1073/pnas.1301891110

  33. Cheng H, Hao S, Liu Y et al (2015) Leukemic marrow infiltration reveals a novel role for Egr3 as a potent inhibitor of normal hematopoietic stem cell proliferation. Blood 126:1302–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Haltalli MLR, Lo Celso C (2021) Intravital imaging of bone marrow (BM) niches. In: Espéli M, Balabanian K (eds) Bone marrow environment: methods and protocols. Springer US, New York, pp 203–222

    Chapter  Google Scholar 

  35. Chemotaxis and migration tool | Free Software. In: ibidi. https://ibidi.com/chemotaxis-analysis/171-chemotaxis-and-migration-tool.html. Accessed 2 Feb 2023

Download references

Acknowledgments

We thank the Imperial College London Central Biomedical Services and Crick Biological Research Facilities for their support and C. Ferchaud from Quantum Optics and Laser Science group, Blackett Laboratory, Imperial College London, for the technical drawings. This work was funded by the Wellcome Investigator Award to C.L.C. 212304/Z/18/Z and CRUK Programme Foundation award to CLC C36195/A26770. CRUK PhD studentship to S.G.A. C36195/A27830. F.T. work was supported by the Wellcome Investigator Award 212304/Z/18/Z and the CRUK Programme Foundation C36195/A26770.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Lo Celso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tissot, F.S., Gonzalez-Anton, S., Lo Celso, C. (2024). Intravital Microscopy to Study the Effect of Matrix Metalloproteinase Inhibition on Acute Myeloid Leukemia Cell Migration in the Bone Marrow. In: Santamaria, S. (eds) Proteases and Cancer. Methods in Molecular Biology, vol 2747. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3589-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3589-6_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3588-9

  • Online ISBN: 978-1-0716-3589-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics