Skip to main content

ddRAD Sequencing and DNA Barcoding

  • Protocol
  • First Online:
DNA Barcoding

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2744))

  • 328 Accesses

Abstract

Double-digest restriction site-associated DNA sequencing is a library preparation protocol that enables capturing variable sites across the genome including single-nucleotide polymorphisms (SNPs). These SNPs can be utilized to gain evolutionary insights into patterns observed in DNA barcodes, to infer population structure and phylogenies, to detect gene flow and introgression, and to perform species delimitation analyses. The protocol includes chemically shearing genomic DNA with restriction enzymes, unique tagging, size selection, and amplification of the resulting DNA fragments. Here we provide a detailed description of each step of the protocol, as well as information on essential equipment and common issues encountered during laboratory work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee KM, Kivelä SM, Ivanov V, Hausmann A, Kaila L, Wahlberg N, Mutanen M (2018) Information dropout patterns in restriction site-associated DNA phylogenomics and a comparison with multilocus Sanger data in a species-rich moth genus. Syst Biol 67:925–939

    Google Scholar 

  3. Eaton DAR, Hipp AL, González-Rodríguez A, Cavender-Bares J (2015) Historical introgression among the American live oaks and the comparative nature of tests for introgression. Evolution (N Y) 69:2587–2601

    CAS  Google Scholar 

  4. Lee KM, Ranta P, Saarikivi J, Kutnar L, Vreš B, Dzhus M, Mutanen M, Kvist L (2020) Using genomic information for management planning of an endangered perennial, Viola uliginosa. Ecol Evol 10:2638–2649

    Google Scholar 

  5. Savary R, Masclaux FG, Wyss T, Droh G, Cruz Corella J, Machado AP, Morton JB, Sanders IR (2018) A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus Rhizophagus irregularis. ISME J 12:17–30

    Google Scholar 

  6. Ivanov V, Lee KM, Mutanen M (2018) Mitonuclear discordance in wolf spiders: genomic evidence for species integrity and introgression. Mol Ecol 27:1681–1695

    Article  CAS  PubMed  Google Scholar 

  7. Dincă V, Lee KM, Vila R, Mutanen M (2019) The conundrum of species delimitation: a genomic perspective on a mitogenetically super-variable butterfly. Proc R Soc B Biol Sci 286:20191311

    Article  Google Scholar 

  8. Hundsdoerfer AK, Lee KM, Kitching IJ, Mutanen M, Barluenga M (2019) Genome-wide SNP data reveal an overestimation of species diversity in a group of hawkmoths. Genome Biol Evol 11:2136–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doorenweerd C, Lee KM, van Nieukerken EJ, Mutanen M (2023) Phylogenomic inference of two widespread European leaf miner species complexes suggests mechanisms for sympatric speciation (Lepidoptera: Nepticulidae: Ectoedemia). Syst Entomol 48:341–353

    Article  Google Scholar 

  10. Linck E, Epperly K, Van Els P, Spellman GM, Bryson RW, McCormack JE, Canales-Del-Castillo R, Klicka J (2019) Dense geographic and genomic sampling reveals paraphyly and a cryptic lineage in a classic sibling species complex. Syst Biol 68:956–966

    PubMed  Google Scholar 

  11. Leaché AD, Fujita MK, Minin VN, Bouckaert RR (2014) Species delimitation using genome-wide SNP Data. Syst Biol 63:534–542

    Article  PubMed  PubMed Central  Google Scholar 

  12. Arnold B, Corbett-Detig RB, Hartl D, Bomblies K (2013) RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol Ecol 22:3179–3190

    Article  CAS  PubMed  Google Scholar 

  13. Ree R, Hipp A (2015) Inferring phylogenetic history from restriction site-associated DNA (RADseq). In: Hörandl E, Appelhans M (eds) Next-generation sequencing in plant systematics. Koeltz Scientific Books, Koenigstein, pp 181–204

    Google Scholar 

  14. Barker DL, Hansen MST, Faruqi AF et al (2004) Two methods of whole-genome amplification enable accurate genotyping across a 2320-SNP linkage panel. Genome Res 14:901–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pinard R, De Winter A, Sarkis GJ, Gerstein MB, Tartaro KR, Plant RN, Egholm M, Rothberg JM, Leamon JH (2006) Assessment of whole genome amplification-induced bias through high-throughput, massively parallel whole genome sequencing. BMC Genomics 7:216

    Article  PubMed  PubMed Central  Google Scholar 

  16. Han T, Chang C, Kwekel J (2012) Characterization of whole genome amplified (WGA) DNA for use in genotyping assay development. BMC Genomics 13:217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Min Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ivanov, V., Lee, K.M., Mutanen, M. (2024). ddRAD Sequencing and DNA Barcoding. In: DeSalle, R. (eds) DNA Barcoding. Methods in Molecular Biology, vol 2744. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3581-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3581-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3580-3

  • Online ISBN: 978-1-0716-3581-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics