Skip to main content

Targeting Nonconserved and Pathogenic Cysteines of Protein Tyrosine Phosphatases with Small Molecules

  • Protocol
  • First Online:
Protein Tyrosine Phosphatases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2743))

  • 263 Accesses

Abstract

Protein tyrosine phosphatases (PTPs) are important therapeutic targets for a range of human pathologies. However, the common architecture of PTP active sites impedes the discovery of selective PTP inhibitors. Our laboratory has recently developed methods to inhibit PTPs allosterically by targeting cysteine residues that either (i) are not conserved in the PTP family or (ii) result from pathogenic mutations. Here, we describe screening protocols for the identification of selective inhibitors that covalently engage such “rare” cysteines in target PTPs. Moreover, to elucidate the breadth of possible applications of our cysteine-directed screening protocols, we provide a brief overview of the nonconserved cysteines present in all human classical PTP domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tonks NK (2006) Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846

    Article  CAS  PubMed  Google Scholar 

  2. Andersen JN, Mortensen OH, Peters GH, Drake PG, Iversen LF, Olsen OH et al (2001) Structural and evolutionary relationships among protein tyrosine phosphatase domains. Mol Cell Biol 21:7117–7136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A et al (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    Article  CAS  PubMed  Google Scholar 

  4. Verma S, Sharma S (2018) Protein tyrosine phosphatase as potential therapeutic target in various disorders. Curr Mol Pharmacol 11:191–202

    Article  CAS  PubMed  Google Scholar 

  5. Rehman AU, Rahman MU, Khan MT, Saud S, Liu H, Song D et al (2018) The landscape of protein tyrosine phosphatase (Shp2) and cancer. Curr Pharm Des 24:3767–3777

    Article  CAS  PubMed  Google Scholar 

  6. Bohmer F, Szedlacsek S, Tabernero L, Ostman A, den Hertog J (2013) Protein tyrosine phosphatase structure-function relationships in regulation and pathogenesis. FEBS J 280:413–431

    Article  PubMed  Google Scholar 

  7. Vainonen JP, Momeny M, Westermarck J (2021) Druggable cancer phosphatases. Sci Transl Med 13. https://doi.org/10.1126/scitranslmed.abe2967

  8. Blaskovich MA (2009) Drug discovery and protein tyrosine phosphatases. Curr Med Chem 16:2095–2176

    Article  CAS  PubMed  Google Scholar 

  9. Tsutsumi R, Ran H, Rademann J, Neel BG (2018) Off-target inhibition by active site-targeting SHP2 inhibitors. FEBS Open Bio 8:1405–1411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wiesmann C, Barr KJ, Kung J, Zhu J, Erlanson DA, Shen W et al (2004) Allosteric inhibition of protein tyrosine phosphatase 1B. Nat Struct Mol Biol 11:730–737

    Article  CAS  PubMed  Google Scholar 

  11. Hansen SK, Cancilla MT, Shiau TP, Kung J, Chen T, Erlanson DA (2005) Allosteric inhibition of PTP1B activity by selective modification of a non-active site cysteine residue. Biochemistry 44:7704–7712

    Article  CAS  PubMed  Google Scholar 

  12. Tautermann CS, Binder F, Büttner FH, Eickmeier C, Fiegen D, Gross U et al (2019) Allosteric activation of striatal-enriched protein tyrosine phosphatase (STEP, PTPN5) by a fragment-like molecule. J Med Chem 62:306–316

    Article  CAS  PubMed  Google Scholar 

  13. Liu Q, Sabnis Y, Zhao Z, Zhang T, Buhrlage SJ, Jones LH et al (2013) Developing irreversible inhibitors of the protein kinase cysteinome. Chem Biol 20:146–159

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chio CM, Lim CS, Bishop AC (2015) Targeting a cryptic allosteric site for selective inhibition of the oncogenic protein tyrosine phosphatase Shp2. Biochemistry 54:497–504

    Article  CAS  PubMed  Google Scholar 

  15. Marsh-Armstrong B, Fajnzylber JM, Korntner S, Plaman BA, Bishop AC (2018) The allosteric site on SHP2’s protein tyrosine phosphatase domain is targetable with druglike small molecules. ACS Omega 3:15763–15770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim JY, Plaman BA, Bishop AC (2020) Targeting a pathogenic cysteine mutation: discovery of a specific inhibitor of Y279C SHP2. Biochemistry 59:3498–3507

    Article  CAS  PubMed  Google Scholar 

  17. Ruddraraju KV, Zhang ZY (2017) Covalent inhibition of protein tyrosine phosphatases. Mol BioSyst 13:1257–1279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen MS, Zhang C, Shokat KM, Taunton J (2005) Structural bioinformatics-based design of selective, irreversible kinase inhibitors. Science 308:1318–1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM (2013) K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503:548–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Canon J, Rex K, Saiki AY, Mohr C, Cooke K, Bagal D et al (2019) The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575:217–223

    Article  CAS  PubMed  Google Scholar 

  21. Visscher M, Arkin MR, Dansen TB (2016) Covalent targeting of acquired cysteines in cancer. Curr Opin Chem Biol 30:61–67

    Article  CAS  PubMed  Google Scholar 

  22. Tartaglia M, Martinelli S, Stella L, Bocchinfuso G, Flex E, Cordeddu V et al (2006) Diversity and functional consequences of germline and somatic PTPN11 mutations in human disease. Am J Hum Genet 78:279–290

    Article  CAS  PubMed  Google Scholar 

  23. Martinelli S, Nardozza AP, Delle Vigne S, Sabetta G, Torreri P, Bocchinfuso G et al (2012) Counteracting effects operating on Src homology 2 domain-containing protein-tyrosine phosphatase 2 (SHP2) function drive selection of the recurrent Y62D and Y63C substitutions in Noonan syndrome. J Biol Chem 287:27066–27077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu Z-H, Xu J, Walls CD, Chen L, Zhang S, Zhang R et al (2013) Structural and mechanistic insights into LEOPARD syndrome-associated SHP2 mutations. J Biol Chem 288:10472–10482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tajan M, de Rocca SA, Valet P, Edouard T, Yart A (2015) SHP2 sails from physiology to pathology. Eur J Med Genet 58:509–525

    Article  PubMed  Google Scholar 

  26. Resnick E, Bradley A, Gan JR, Douangamath A, Krojer T, Sethi R et al (2019) Rapid covalent-probe discovery by electrophile-fragment screening. J Am Chem Soc 141:8951–8968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Backus KM, Correia BE, Lum KM, Forli S, Horning BD, Gonzalez-Paez GE et al (2016) Proteome-wide covalent ligand discovery in native biological systems. Nature 534:570–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barr AJ, Ugochukwu E, Lee WH, King ONF, Filippakopoulos P, Alfano I et al (2009) Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136:352–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Salmeen A, Andersen JN, Myers MP, Meng TC, Hinks JA, Tonks NK et al (2003) Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Rachel Seifert for bioinformatic analysis of nonconserved cysteines in PTP domains and HyoJeon Kim and Lynn Kao for help in the development of compound-screening protocols. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R15GM071388. Funding from Amherst College is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony C. Bishop .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bishop, A.C., Serbina, A. (2024). Targeting Nonconserved and Pathogenic Cysteines of Protein Tyrosine Phosphatases with Small Molecules. In: Thévenin, D., P. Müller, J. (eds) Protein Tyrosine Phosphatases. Methods in Molecular Biology, vol 2743. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3569-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3569-8_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3568-1

  • Online ISBN: 978-1-0716-3569-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics