Skip to main content

sRNA Structural Modeling Based on NMR Data

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2741))

Abstract

Small non-coding RNAs (sRNAs) play vital roles in gene expression regulation and RNA interference. To comprehend their molecular mechanisms and develop therapeutic approaches, determining the accurate three-dimensional structure of sRNAs is crucial. Although nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for structural biology, obtaining high-resolution structures of sRNAs using NMR data alone can be challenging. In such cases, structural modeling can provide additional details about RNA structures. In this context, we present a protocol for the structural modeling of sRNA using the SimRNA method based on sparse NMR constraints. To demonstrate the efficacy of our method, we provide selected examples of NMR spectra and RNA structures, specifically for the second stem-loop of DsrA sRNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Storz G, Vogel J, Wassarman KM (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell 43(6):880–891. https://doi.org/10.1016/j.molcel.2011.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Waters LS, Storz G (2009) Regulatory RNAs in bacteria. Cell 136(4):615–628. https://doi.org/10.1016/j.cell.2009.01.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20. https://doi.org/10.1016/j.cell.2004.12.035

    Article  CAS  PubMed  Google Scholar 

  4. Papenfort K, Vogel J (2010) Regulatory RNA in bacterial pathogens. Cell Host Microbe 8(1):116–127. https://doi.org/10.1016/j.chom.2010.06.008

    Article  CAS  PubMed  Google Scholar 

  5. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157(1):77–94. https://doi.org/10.1016/j.cell.2014.03.008

    Article  CAS  PubMed  Google Scholar 

  6. Shi H, Rangadurai A, Abou Assi H, Roy R, Case DA, Herschlag D, Yesselman JD, Al-Hashimi HM (2020) Rapid and accurate determination of atomistic RNA dynamic ensemble models using NMR and structure prediction. Nat Commun 11(1):5531. https://doi.org/10.1038/s41467-020-19371-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bailor MH, Sun X, Al-Hashimi HM (2010) Topology links RNA secondary structure with global conformation, dynamics, and adaptation. Science 327(5962):202–206. https://doi.org/10.1126/science.1181085

    Article  CAS  PubMed  Google Scholar 

  8. Lu K, Heng X, Garyu L, Monti S, Garcia EL, Kharytonchyk S, Dorjsuren B, Kulandaivel G, Jones S, Hiremath A, Divakaruni SS, LaCotti C, Barton S, Tummillo D, Hosic A, Edme K, Albrecht S, Telesnitsky A, Summers MF (2011) NMR detection of structures in the HIV-1 5'-leader RNA that regulate genome packaging. Science 334(6053):242–245. https://doi.org/10.1126/science.1210460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ban N, Nissen P, Hansen J, Moore PB, Steitz TA (2000) The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289(5481):905–920. https://doi.org/10.1126/science.289.5481.905

    Article  CAS  PubMed  Google Scholar 

  10. Chung K, Xu L, Chai P, Peng J, Devarkar SC, Pyle AM (2022) Structures of a mobile intron retroelement poised to attack its structured DNA target. Science 378(6620):627–634. https://doi.org/10.1126/science.abq2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bai XC, Rajendra E, Yang G, Shi Y, Scheres SH (2015) Sampling the conformational space of the catalytic subunit of human gamma-secretase. elife 4. https://doi.org/10.7554/eLife.11182

  12. Scheres SH (2016) Processing of structurally heterogeneous Cryo-EM data in RELION. Methods Enzymol 579:125–157. https://doi.org/10.1016/bs.mie.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  13. Hendrickson WA, Teeter MM (1981) Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulphur. Nature 290(5802):107–113. https://doi.org/10.1038/290107a0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barnwal RP, Yang F, Varani G (2017) Applications of NMR to structure determination of RNAs large and small. Arch Biochem Biophys 628:42–56. https://doi.org/10.1016/j.abb.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jiang F, Kumar RA, Jones RA, Patel DJ (1996) Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 382(6587):183–186. https://doi.org/10.1038/382183a0

    Article  CAS  PubMed  Google Scholar 

  16. Pardi A, Morden KM, Patel DJ, Tinoco I Jr (1982) Kinetics for exchange of imino protons in the d(C-G-C-G-A-A-T-T-C-G-C-G) double helix and in two similar helices that contain a G . T base pair, d(C-G-T-G-A-A-T-T-C-G-C-G), and an extra adenine, d(C-G-C-A-G-A-A-T-T-C-G-C-G). Biochemistry 21(25):6567–6574. https://doi.org/10.1021/bi00268a038

    Article  CAS  PubMed  Google Scholar 

  17. Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, Binas O, Castillo-Martinez J, Cetiner E, Ceylan B, Chiu LY, Davila-Calderon J, Dhamotharan K, Duchardt-Ferner E, Ferner J, Frydman L, Furtig B, Gallego J, Grun JT, Hacker C, Haddad C, Hahnke M, Hengesbach M, Hiller F, Hohmann KF, Hymon D, de Jesus V, Jonker H, Keller H, Knezic B, Landgraf T, Lohr F, Luo L, Mertinkus KR, Muhs C, Novakovic M, Oxenfarth A, Palomino-Schatzlein M, Petzold K, Peter SA, Pyper DJ, Qureshi NS, Riad M, Richter C, Saxena K, Schamber T, Scherf T, Schlagnitweit J, Schlundt A, Schnieders R, Schwalbe H, Simba-Lahuasi A, Sreeramulu S, Stirnal E, Sudakov A, Tants JN, Tolbert BS, Vogele J, Weiss L, Wirmer-Bartoschek J, Wirtz Martin MA, Wohnert J, Zetzsche H (2020) Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res 48(22):12415–12435. https://doi.org/10.1093/nar/gkaa1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang Y, Han G, Jiang X, Yuwen T, Xue Y (2021) Chemical shift prediction of RNA imino groups: application toward characterizing RNA excited states. Nat Commun 12(1):1595. https://doi.org/10.1038/s41467-021-21840-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bahrami A, Clos LJ 2nd, Markley JL, Butcher SE, Eghbalnia HR (2012) RNA-PAIRS: RNA probabilistic assignment of imino resonance shifts. J Biomol NMR 52(4):289–302. https://doi.org/10.1007/s10858-012-9603-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ponce-Salvatierra A, Astha MK, Nithin C, Ghosh P, Mukherjee S, Bujnicki JM (2019) Computational modeling of RNA 3D structure based on experimental data. Biosci Rep 39(2). https://doi.org/10.1042/BSR20180430

  21. Li B, Cao Y, Westhof E, Miao Z (2020) Advances in RNA 3D structure modeling using experimental data. Front Genet 11:574485. https://doi.org/10.3389/fgene.2020.574485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boniecki MJ, Lach G, Dawson WK, Tomala K, Lukasz P, Soltysinski T, Rother KM, Bujnicki JM (2016) SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction. Nucleic Acids Res 44(7):e63. https://doi.org/10.1093/nar/gkv1479

    Article  CAS  PubMed  Google Scholar 

  23. Piatkowski P, Kasprzak JM, Kumar D, Magnus M, Chojnowski G, Bujnicki JM (2016) RNA 3D structure modeling by combination of template-based method ModeRNA, template-free folding with SimRNA, and refinement with QRNAS. Methods Mol Biol 1490:217–235. https://doi.org/10.1007/978-1-4939-6433-8_14

    Article  CAS  PubMed  Google Scholar 

  24. Wirecki TK, Nithin C, Mukherjee S, Bujnicki JM, Boniecki MJ (2020) Modeling of three-dimensional RNA structures using SimRNA. Methods Mol Biol 2165:103–125. https://doi.org/10.1007/978-1-0716-0708-4_6

    Article  CAS  PubMed  Google Scholar 

  25. Wu P, Liu X, Yang L, Sun Y, Gong Q, Wu J, Shi Y (2017) The important conformational plasticity of DsrA sRNA for adapting multiple target regulation. Nucleic Acids Res 45(16):9625–9639. https://doi.org/10.1093/nar/gkx570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Hefei National Laboratory for Physical Sciences at Microscale and School of Life Science, University of Science and Technology of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengzhi Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wu, P., Yang, L. (2024). sRNA Structural Modeling Based on NMR Data. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 2741. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3565-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3565-0_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3564-3

  • Online ISBN: 978-1-0716-3565-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics