Skip to main content

RNA Extraction from Gram-Positive Bacteria Membrane Vesicles Using a Polymer-Based Precipitation Method

  • Protocol
  • First Online:
Bacterial Regulatory RNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2741))

Abstract

Investigations into the biological role and composition of bacterial extracellular vesicles have grown in popularity in recent years. Vesicles perform a variety of functions during interactions with eukaryotic host cells, ranging from antibiotic resistance to immune modulation. It is necessary to isolate vesicles in order to understand their biological functions. Here we describe a polymer-based precipitation method allowing high-yield isolation of extracellular vesicles and their cargo RNA from the Gram-positive bacterium Staphylococcus aureus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Roier S, Zingl FG, Cakar F, Schild S (2016) Bacterial outer membrane vesicle biogenesis: a new mechanism and its implications. 6. Microb Cell 3:257–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Briaud P, Carroll RK (2020) Extracellular-vesicle (EV) biogenesis and functions in Gram-positive bacteria. Infect Immun. https://doi.org/10.1128/IAI.00433-20

  3. Brown L, Wolf JM, Prados-Rosales R, Casadevall A (2015) Through the wall: extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. 10. Nat Rev Microbiol 13:620–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Briaud P, Frey A, Frey A, Marino EC, Bastock RA, Zielinski RE, Wiemels RE, Keogh RA, Murphy ER, Shaw LN, Shaw LN, Carroll RK (2021) Temperature influences the composition and cytotoxicity of extracellular vesicles in Staphylococcus aureus. https://doi.org/10.1128/msphere.00676-21

  5. Choi E-J, Lee HG, Bae I-H, Kim W, Park J, Lee TR, Cho E-G (2018) Propionibacterium acnes-derived extracellular vesicles promote acne-like phenotypes in human epidermis. 6. J Invest Dermatol 138:1371–1379

    Article  CAS  PubMed  Google Scholar 

  6. Hong S-W, Choi E-B, Min T-K, Kim J-H, Kim M-H, Jeon SG, Lee B-J, Gho YS, Jee Y-K, Pyun B-Y, Kim Y-K (2014) An important role of α-hemolysin in extracellular vesicles on the development of atopic dermatitis induced by Staphylococcus aureus. 7. PLoS One 9:e100499

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lee J, Lee E-Y, Kim S-H, Kim D-K, Park K-S, Kim KP, Kim Y-K, Roh T-Y, Gho YS (2013) Staphylococcus aureus extracellular vesicles carry biologically active β-lactamase. 6. Antimicrob Agents Chemother 57:2589–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bitto NJ, Cheng L, Johnston EL, Pathirana R, Phan TK, Poon IKH, O’Brien-Simpson NM, Hill AF, Stinear TP, Kaparakis-Liaskos M (2021) Staphylococcus aureus membrane vesicles contain immunostimulatory DNA, RNA and peptidoglycan that activate innate immune receptors and induce autophagy. J Extracell Vesicles 10:e12080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Dean SN, Rimmer MA, Turner KB, Phillips DA, Caruana JC, Hervey WJ, Leary DH, Walper SA (2020) Lactobacillus acidophilus membrane vesicles as a vehicle of Bacteriocin delivery. Front Microbiol 11:710

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lee E-Y, Choi D-Y, Kim D-K, Kim J-W, Park JO, Kim S, Kim S-H, Desiderio DM, Kim Y-K, Kim K-P, Gho YS (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. 24. Proteomics 9:5425–5436

    Article  CAS  PubMed  Google Scholar 

  11. Choi JH, Moon CM, Shin T-S, Kim EK, McDowell A, Jo M-K, Joo YH, Kim S-E, Jung H-K, Shim K-N, Jung S-A, Kim Y-K (2020) Lactobacillus paracasei-derived extracellular vesicles attenuate the intestinal inflammatory response by augmenting the endoplasmic reticulum stress pathway. Exp Mol Med. https://doi.org/10.1038/s12276-019-0359-3

  12. Kaparakis-Liaskos M, Ferrero RL (2015) Immune modulation by bacterial outer membrane vesicles. 6. Nat Rev Immunol 15:375–387

    Article  CAS  PubMed  Google Scholar 

  13. Koeppen K, Hampton TH, Jarek M, Scharfe M, Gerber SA, Mielcarz DW, Demers EG, Dolben EL, Hammond JH, Hogan DA, Stanton BA (2016) A novel mechanism of host-pathogen interaction through sRNA in bacterial outer membrane vesicles. 6. PLoS Pathog 12:e1005672

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brennan K, Martin K, FitzGerald SP, O’Sullivan J, Wu Y, Blanco A, Richardson C, Mc Gee MM (2020) A comparison of methods for the isolation and separation of extracellular vesicles from protein and lipid particles in human serum. 1. Sci Rep 10:1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schlatterer K, Beck C, Hanzelmann D, Lebtig M, Fehrenbacher B, Schaller M, Ebner P, Nega M, Otto M, Kretschmer D, Peschel A (2018) The mechanism behind bacterial lipoprotein release: phenol-soluble modulins mediate toll-like receptor 2 activation via extracellular vesicle release from Staphylococcus aureus. 6. MBio 9:e01851–e01818

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Briaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Briaud, P., Carroll, R.K. (2024). RNA Extraction from Gram-Positive Bacteria Membrane Vesicles Using a Polymer-Based Precipitation Method. In: Arluison, V., Valverde, C. (eds) Bacterial Regulatory RNA. Methods in Molecular Biology, vol 2741. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3565-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3565-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3564-3

  • Online ISBN: 978-1-0716-3565-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics