Skip to main content

Development of Organoids to Study Infectious Host Interactions

  • Protocol
  • First Online:
Borrelia burgdorferi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2742))

Abstract

Emerging organoid research is paving way for studies in infectious diseases. Described here is a technique for the generation of stem-cell derived organoids for human small intestine and lung together with methods to infect such organoids with a mock pathogen (Cryptosporidium parvum). Such systems are amenable to imaging and processing for molecular biological analyses. It is the intent of this chapter to provide a simple, routine organoid procedure so that in vitro studies with Borrelia such as cell invasion and dissemination can be conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berglund J, Eitrem R, Ornstein K et al (1995) An epidemiologic study of Lyme disease in southern Sweden. N Engl J Med 333:1319–1327. https://doi.org/10.1056/NEJM199511163332004

    Article  CAS  PubMed  Google Scholar 

  2. Ursinus J, Vrijmoeth HD, Harms MG et al (2021) Prevalence of persistent symptoms after treatment for Lyme Borreliosis: a prospective observational cohort study. Lancet Reg Health Eur 6:100142. https://doi.org/10.1016/j.lanepe.2021.100142

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bechtold KT, Rebman AW, Crowder LA et al (2017) Standardized symptom measurement of individuals with early Lyme disease over time. Arch Clin Neuropsychol 32(2):129–141. https://doi.org/10.1093/arclin/acw098

    Article  PubMed  Google Scholar 

  4. Wormser GP, McKenna D, Karmen CL et al (2020) Prospective evaluation of the frequency and severity of symptoms in Lyme disease patients with erythema migrans compared with matched controls at baseline, 6 months, and 12 months. Clin Infect Dis 71(12):3118–3124. https://doi.org/10.1093/cid/ciz1215

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barthold SW, Beck DS, Hansen GM et al (1990) Lyme Borreliosis in selected strains and ages of laboratory mice. J Infect Dis 162(1):133–138. https://doi.org/10.1093/infdis/162.1.133

  6. Barthold SW, Sidman CL, Smith AL (1992) Lyme Borreliosis in genetically resistant and susceptible mice with severe combined immunodeficiency. Am J Trop Med Hyg 47(5):605–613. https://doi.org/10.4269/ajtmh.1992.47.605

  7. Barthold SW, deSouza M, Feng S (1996) Serum-mediated resolution of Lyme Arthritis in mice. Lab Investig 74(1):57–67

    Google Scholar 

  8. Fikrig E, Barthold SW, Chen M et al (1997) Protective antibodies develop, and murine Lyme Arthritis regresses, in the absence of MHC class II and CD4+ T cells. J Immunol 159(11):5682–5686

    Google Scholar 

  9. Ma Y, Seiler KP, Eichwald EJ, Weis JH et al (1998) Distinct characteristics of resistance to Borrelia burgdorferi-induced arthritis in C57BL/6N mice. Infect Immun 66(1):161–168. https://doi.org/10.1128/IAI.66.1.161-168.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iliopoulou BP, Alroy J, Huber BT (2007) CD28 deficiency exacerbates joint inflammation upon Borrelia burgdorferi infection, resulting in the development of chronic Lyme Arthritis. J Immunol 179(12):8076–8082. https://doi.org/10.4049/jimmunol.179.12.8076

  11. Montgomery RR, Booth CJ, Wang X et al (2007) Recruitment of macrophages and polymorphonuclear leukocytes in Lyme Carditis. Infect Immun 75(2):613–620. https://doi.org/10.1128/IAI.00685-06

  12. Sabino GJ, Hwang SJ, McAllister SC et al (2011) Interferon-γ influences the composition of leukocytic infiltrates in murine Lyme Carditis. Am J Pathol 179(4):1917–1928. https://doi.org/10.1016/j.ajpath.2011.06.029

  13. Lochhead RB, Sonderegger FL, Ma Y et al (2012) Endothelial cells and fibroblasts amplify the arthritogenic type I IFN response in murine Lyme disease and are major sources of chemokines in Borrelia burgdorferi-infected joint tissue. J Immunol 189(5):2488–2501. https://doi.org/10.4049/jimmunol.1201095

    Article  CAS  PubMed  Google Scholar 

  14. Bernard Q, Wang Z, Di Nardo A, Boulanger N (2017) Interaction of primary mast cells with Borrelia burgdorferi (sensu stricto): role in transmission and dissemination in C57BL/6 mice. Parasit Vectors 10(1):313. https://doi.org/10.1186/s13071-017-2243-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Aranjuez GF, Kuhn HW, Adams PP, Jewett MW (2019) Borrelia burgdorferi bbk13 is critical for spirochete population expansion in the skin during early infection. Infect Immun 87(5):e00887–e00818. https://doi.org/10.1128/IAI.00887-18

    Article  PubMed  PubMed Central  Google Scholar 

  16. Casselli T, Divan A, Vomhof-DeKrey EE et al (2021) A murine model of Lyme disease demonstrates that Borrelia burgdorferi colonizes the dura mater and induces inflammation in the central nervous system. PLoS Pathog 17(2):e1009256. https://doi.org/10.1371/journal.ppat.1009256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cheng M, Xu J, Ding K et al (2022) Attenuation of relapsing fever neuroborreliosis in mice by IL-17A blockade. Proc Natl Acad Sci U S A 119(42):e2205460119. https://doi.org/10.1073/pnas.2205460119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou X, Miller MR, Motaleb M et al (2008) Spent culture medium from virulent Borrelia burgdorferi increases permeability of individually perfused microvessels of rat mesentery. PLoS One 3(12):e4101. https://doi.org/10.1371/journal.pone.0004101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schmitz JL, Schell RF, Hejka A et al (1988) Induction of Lyme Arthritis in LSH hamsters. Infect Immun 56:2336–2342. https://doi.org/10.1128/iai.56.9.2336-2342.1988

  20. Hejka A, Schmitz JL, England DM et al (1989) Histopathology of Lyme Arthritis in LSH hamsters. Am J Pathol 134(5):1113–1123

    Google Scholar 

  21. Goodman JL, Jurkovich P, Kodner C, Johnson RC (1991) Persistent cardiac and urinary tract infections with Borrelia burgdorferi in experimentally infected Syrian hamsters. J Clin Microbiol 29(5):894–896. https://doi.org/10.1128/jcm.29.5.894-896.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lovrich SD, Callister SM, Schmitz JL et al (1991) Borreliacidal activity of sera from hamsters infected with the Lyme disease spirochete. Infect Immun 59(8):2522–2528. https://doi.org/10.1128/iai.59.8.2522-2528.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schmitz JL, Schell RF, Lovrich SD et al (1991) Characterization of the protective antibody response to Borrelia burgdorferi in experimentally infected LSH hamsters. Infect Immun 59(6):1916–1921. https://doi.org/10.1128/iai.59.6.1916-1921.1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Callister SM, Schell RF, Case KL et al (1993) Characterization of the borreliacidal antibody response to Borrelia burgdorferi in humans: a serodiagnostic test. J Infect Dis 167(1):158–164. https://doi.org/10.1093/infdis/167.1.158

  25. Lovrich SD, Callister SM, Lim LC, Schell RF (1993) Seroprotective groups among isolates of Borrelia burgdorferi. Infect Immun 61(10):4367–4374. https://doi.org/10.1128/iai.61.10.4367-4374.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jobe DA, Callister SM, Lim LC et al (1994) Ability of canine Lyme disease vaccine to protect hamsters against infection with several isolates of Borrelia burgdorferi. J Clin Microbiol 32(3):618–622. https://doi.org/10.1128/jcm.32.3.618-622.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lovrich SD, Callister SM, Lim LCL et al (1994) Seroprotective groups of Lyme Borreliosis spirochetes from North America and Europe. J Infect Dis 170(1):115–121. https://doi.org/10.1093/infdis/170.1.115

  28. Lim LC, England DM, DuChateau BK et al (1994) Development of destructive arthritis in vaccinated hamsters challenged with Borrelia burgdorferi. Infect Immun 62(7):2825–2833. https://doi.org/10.1128/iai.62.7.2825-2833.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lim LC, England DM, DuChateau BK et al (1995) Borrelia burgdorferi-specific T lymphocytes induce severe destructive Lyme Arthritis. Infect Immun 63(4):1400–1408. https://doi.org/10.1128/iai.63.4.1400-1408.1995

  30. Lim LC, England DM, Glowacki NJ et al (1995) Involvement of CD4+ T lymphocytes in induction of severe destructive Lyme Arthritis in inbred LSH hamsters. Infect Immun 63(12):4818–4825. https://doi.org/10.1128/iai.63.12.4818-4825.1995

  31. Lovrich SD, Callister SM, DuChateau BK et al (1995) Abilities of OspA proteins from different seroprotective groups of Borrelia burgdorferi to protect hamsters from infection. Infect Immun 63(6):2113–2119. https://doi.org/10.1128/iai.63.6.2113-2119.1995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Du Chateau BK, England DM, Callister SM et al (1996) Macrophages exposed to Borrelia burgdorferi induce Lyme Arthritis in hamsters. Infect Immun 64(7):2540–2547. https://doi.org/10.1128/iai.64.7.2540-2547.1996

  33. Padilla ML, Callister SM, Schell RF et al (1996) Characterization of the protective borreliacidal antibody response in humans and hamsters after vaccination with a Borrelia burgdorferi outer surface protein A vaccine. J Infect Dis 174(4):739–746. https://doi.org/10.1093/infdis/174.4.739

    Article  CAS  PubMed  Google Scholar 

  34. DuChateau BK, Jensen JR, England DM et al (1997) Macrophages and enriched populations of T lymphocytes interact synergistically for the induction of severe, destructive Lyme Arthritis. Infect Immun 65(7):2829–2836. https://doi.org/10.1128/iai.65.7.2829-2836.1997

  35. DuChateau BK, Munson EL, England DM et al (1999) Macrophages interact with enriched populations of distinct T lymphocyte subsets for the induction of severe destructive Lyme Arthritis. J Leukoc Biol 65(2):162–170. https://doi.org/10.1002/jlb.65.2.162

  36. Croke CL, Munson EL, Lovrich SD et al (2000) Occurrence of severe destructive Lyme Arthritis in hamsters vaccinated with outer surface protein A and challenged with Borrelia burgdorferi. Infect Immun 68(2):658–663. https://doi.org/10.1128/IAI.68.2.658-663.2000

  37. Munson E, Nardelli DT, Du Chateau BK et al (2012) Hamster and murine models of severe destructive Lyme Arthritis. Clin Dev Immunol 2012:504215. https://doi.org/10.1155/2012/504215

  38. Foley DM, Gayek RJ, Skare JT et al (1995) Rabbit model of Lyme Borreliosis: erythema migrans, infection-derived immunity, and identification of Borrelia burgdorferi proteins associated with virulence and protective immunity. J Clin Invest 96(2):965–975. https://doi.org/10.1172/JCI118144

  39. Batool M, Hillhouse AE, Ionov Y et al (2019) New Zealand white rabbits effectively clear Borrelia burgdorferi B31 despite the bacterium’s functional vlsE antigenic variation system. Infect Immun 87(7):e00164–e00119. https://doi.org/10.1128/IAI.00164-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rogovskyy AS, Caoili SEC, Ionov Y et al (2019) Delineating surface epitopes of Lyme disease pathogen targeted by highly protective antibodies of New Zealand white rabbits. Infect Immun 87(8):e00246–e00219. https://doi.org/10.1128/IAI.00246-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chang ES, Champion CI, Wu XY et al (2000) Comparison of protection in rabbits against host-adapted and cultivated Borrelia burgdorferi following infection-derived immunity or immunization with outer membrane vesicles or outer surface protein A. Infect Immun 68(7):4189–4199. https://doi.org/10.1128/IAI.68.7.4189-4199.2000

    Article  Google Scholar 

  42. Chong-Cerrillo C, Shang ES, Blanco DR et al (2001) Immunohistochemical analysis of Lyme disease in the skin of naive and infection-immune rabbits following challenge. Infect Immun 69(6):4094–4102. https://doi.org/10.1128/IAI.69.6.4094-4102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ionov Y, Rogovskyy AS (2020) Comparison of motif-based and whole-unique-sequence-based analyses of phage display library datasets generated by biopanning of anti-Borrelia burgdorferi immune sera. PLoS One 15(1):e0226378. https://doi.org/10.1371/journal.pone.0226378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Philipp MT, Aydintug MK, Bohm RP Jr et al (1993) Early and early disseminated phases of Lyme disease in the rhesus monkey: a model for infection in humans. Infect Immun 61(7):3047–3059. https://doi.org/10.1128/iai.61.7.3047-3059.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Aydintug MK, Gu Y, Philipp MT (1994) Borrelia burgdorferi antigens that are targeted by antibody-dependent, complement-mediated killing in the rhesus monkey. Infect Immun 62(11):4929–4937. https://doi.org/10.1128/iai.62.11.4929-4937.1994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pachner AR, Delaney E, O’Neill T (1995) Neuroborreliosis in the nonhuman primate: Borrelia burgdorferi persists in the central nervous system. Ann Neurol 38(4):667–669. https://doi.org/10.1002/ana.410380417

    Article  CAS  PubMed  Google Scholar 

  47. Roberts ED, Bohm RP Jr, Cogswell FB et al (1995) Chronic Lyme disease in the rhesus monkey. Lab Investig 72(2):146–160

    CAS  PubMed  Google Scholar 

  48. England JD, Bohm RP Jr, Roberts ED, Philipp MT (1997) Mononeuropathy multiplex in rhesus monkeys with chronic Lyme disease. Ann Neurol 41(3):375–384. https://doi.org/10.1002/ana.410410313

    Article  CAS  PubMed  Google Scholar 

  49. England JD, Bohm RP Jr, Roberts ED, Philipp MT (1997) Lyme Neuroborreliosis in the rhesus monkey. Semin Neurol 17(1):53–56. https://doi.org/10.1055/s-2008-1040913

  50. Pachner AR, Delaney E, Zhang WF et al (1999) Protection from Lyme Neuroborreliosis in nonhuman primates with a multiantigenic vaccine. Clin Immunol 91(3):310–313. https://doi.org/10.1006/clim.1999.4703

  51. Pachner AR, Amemiya K, Bartlett M et al (2001) Lyme Borreliosis in rhesus macaques: effects of corticosteroids on spirochetal load and isotype switching of anti-Borrelia burgdorferi antibody. Clin Diagn Lab Immunol 8(2):225–232. https://doi.org/10.1128/CDLI.8.2.225-232.2001

  52. Pachner AR, Cadavid D, Shu G et al (2001) Central and peripheral nervous system infection, immunity, and inflammation in the NHP model of Lyme Borreliosis. Ann Neurol 50(3):330–338

    Google Scholar 

  53. Embers ME, Barthold SW, Borda JT et al (2012) Persistence of Borrelia burgdorferi in rhesus macaques following antibiotic treatment of disseminated infection. PLoS One 7(1):e29914. https://doi.org/10.1371/journal.pone.0029914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Embers ME, Hasenkampf NR, Jacobs MB, Philipp MT (2012) Dynamic longitudinal antibody responses during Borrelia burgdorferi infection and antibiotic treatment of rhesus macaques. Clin Vaccine Immunol 19(8):1218–1226. https://doi.org/10.1128/CVI.00228-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Embers ME, Hasenkampf NR, Embers DG, Doyle LA (2013) Pharmacokinetic analysis of oral doxycycline in rhesus macaques. J Med Primatol 42(2):57–61. https://doi.org/10.1111/jmp.12031

    Article  CAS  PubMed  Google Scholar 

  56. Embers ME, Hasenkampf NR, Jacobs MB et al (2017) Variable manifestations, diverse seroreactivity and post-treatment persistence in non-human primates exposed to Borrelia burgdorferi by tick feeding. PLoS One 12(12):e0189071. https://doi.org/10.1371/journal.pone.0189071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Crossland NA, Alvarez X, Embers ME (2018) Late disseminated Lyme disease: associated pathology and spirochete persistence posttreatment in rhesus macaques. Am J Pathol 188(3):672–682. https://doi.org/10.1016/j.ajpath.2017.11.005

    Article  PubMed  PubMed Central  Google Scholar 

  58. Schiller ZA, Rudolph MJ, Toomey JR et al (2021) Blocking Borrelia burgdorferi transmission from infected ticks to nonhuman primates with a human monoclonal antibody. J Clin Invest 131(11):e144843. https://doi.org/10.1172/JCI144843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Narasimhan S, Booth CJ, Philipp MT et al (2023) Repeated tick infestations impair Borrelia burgdorferi transmission in a non-human primate model of tick feeding. Pathogens 12(1):132. https://doi.org/10.3390/pathogens12010132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Adams Y, Clausen AS, Jensen PØ et al (2022) 3D blood-brain barrier-organoids as a model for Lyme Neuroborreliosis highlighting genospecies dependent organotropism. iScience 26(1):105838. https://doi.org/10.1016/j.isci.2022.105838

  61. Guo Z, Zhao N, Chung TD et al (2022) Visualization of the dynamics of invasion and intravasation of the bacterium that causes Lyme disease in a tissue engineered dermal microvessel model. Adv Sci (Weinh) 9(35):e2204395. https://doi.org/10.1002/advs.202204395

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Liu M, Zhang Y et al (2023) Recent methods of droplet microfluidics and their applications in spheroids and organoids. Lab Chip 23(5):1080–1096. https://doi.org/10.1039/d2lc00493c

    Article  CAS  PubMed  Google Scholar 

  63. Blokzijl F, de Ligt J, Jager M et al (2016) Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538(7624):260–264. https://doi.org/10.1038/nature19768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Heo I, Dutta D, Schaefer DA et al (2018) Modelling cryptosporidium infection in human small intestinal and lung organoids. Nat Microbiol 3(7):814–823. https://doi.org/10.1038/s41564-018-0177-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sachs N, Papaspyropoulos A, Zomer-van Ommen DD et al (2019) Long-term expanding human airway organoids for disease modeling. EMBO J 38(4):e100300. https://doi.org/10.15252/embj.2018100300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Broutier L, Andersson-Rolf A, Hindley CJ et al (2016) Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation. Nat Protoc 11(9):1724–1743. https://doi.org/10.1038/nprot.2016.097

    Article  CAS  PubMed  Google Scholar 

  67. Heijmans J, van Lidth de Jude JF, Koo BK et al (2013) ER stress causes rapid loss of intestinal epithelial stemness through activation of the unfolded protein response. Cell Rep 3(4):1128–1139. https://doi.org/10.1016/j.celrep.2013.02.031

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leona Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lahree, A., Gilbert, L. (2024). Development of Organoids to Study Infectious Host Interactions. In: Gilbert, L. (eds) Borrelia burgdorferi. Methods in Molecular Biology, vol 2742. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3561-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3561-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3560-5

  • Online ISBN: 978-1-0716-3561-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics