Skip to main content

Isolation of Bacteriophages from Soil Samples in a Poorly Equipped Field Laboratory in Kruger National Park

  • Protocol
  • First Online:
Bacteriophages

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2738))

Abstract

Bacteriophages are viruses that infect bacteria. Bacteriophages are ubiquitous and are the most abundant organisms on the planet. Despite this, very little is known about the influence and effect of bacteriophages within terrestrial environments. Additionally, the natural soil microbiome profiles remain largely unexplored. Here we describe protocols that can be used, in field or rural laboratories containing only basic equipment, to make bacteriophage isolation more accessible and to facilitate such research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ackermann HW, Audurier A, Berthiaume L, Jones LA, Mayo JA, Vidaver AK (1978) Guidelines for bacteriophage characterization. Adv Virus Res 23:1–24. https://doi.org/10.1016/s0065-3527(08)60096-2

    Article  CAS  PubMed  Google Scholar 

  2. Adriaenssens EM, Ceyssens PJ, Dunon V, Ackermann HW, Van Vaerenbergh J, Maes M, De Proft M, Lavigne R (2011) Bacteriophages LIMElight and LIMEzero of Pantoea agglomerans, belonging to the “phiKMV-like viruses”. Appl Environ Microbiol 77(10):3443–3450. https://doi.org/10.1128/AEM.00128-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cowles PB (1931) A bacteriophage for B. anthracis. J Bacteriol 21(3):161–166. https://doi.org/10.1128/jb.21.3.161-166.1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9:9. https://doi.org/10.1186/1743-422X-9-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Nelson DC, Schmelcher M, Rodriguez-Rubio L, Klumpp J, Pritchard DG, Dong S, Donovan DM (2012) Endolysins as antimicrobials. Adv Virus Res 83:299–365. https://doi.org/10.1016/B978-0-12-394438-2.00007-4

    Article  CAS  PubMed  Google Scholar 

  6. Nethery MA, Hidalgo-Cantabrana C, Roberts A, Barrangou R (2022) CRISPR-based engineering of phages for in situ bacterial base editing. Proc Natl Acad Sci U S A 119(46):e2206744119. https://doi.org/10.1073/pnas.2206744119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Walmagh M, Briers Y, dos Santos SB, Azeredo J, Lavigne R (2012) Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201phi2-1 and PVP-SE1. PLoS One 7(5):e36991. https://doi.org/10.1371/journal.pone.0036991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. El-Arabi TF, Griffiths MW, She YM, Villegas A, Lingohr EJ, Kropinski AM (2013) Genome sequence and analysis of a broad-host range lytic bacteriophage that infects the Bacillus cereus group. Virol J 10:48. https://doi.org/10.1186/1743-422X-10-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Little JW, Mount DW (1982) The SOS regulatory system of Escherichia coli. Cell 29(1):11–22. https://doi.org/10.1016/0092-8674(82)90085-x

    Article  CAS  PubMed  Google Scholar 

  10. Smith MC, Brown WR, McEwan AR, Rowley PA (2010) Site-specific recombination by phiC31 integrase and other large serine recombinases. Biochem Soc Trans 38(2):388–394. https://doi.org/10.1042/BST0380388

    Article  CAS  PubMed  Google Scholar 

  11. Braga LPP, Spor A, Kot W, Breuil MC, Hansen LH, Setubal JC, Philippot L (2020) Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios. Microbiome 8(1):52. https://doi.org/10.1186/s40168-020-00822-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cowles PB (1931) The recovery of bacteriophage from filtrates derived from heated spore-suspensions. J Bacteriol 22(2):119–123. https://doi.org/10.1128/jb.22.2.119-123.1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brown ER, Cherry WB (1955) Specific identification of Bacillus anthracis by means of a variant bacteriophage. J Infect Dis 96(1):34–39. https://doi.org/10.1093/infdis/96.1.34

    Article  CAS  PubMed  Google Scholar 

  14. Klumpp J, Calendar R, Loessner MJ (2010) Complete nucleotide sequence and molecular characterization of bacillus phage TP21 and its relatedness to other phages with the same name. Viruses 2(4):961–971. https://doi.org/10.3390/v2040961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yuan Y, Gao M, Wu D, Liu P, Wu Y (2012) Genome characteristics of a novel phage from Bacillus thuringiensis showing high similarity with phage from Bacillus cereus. PLoS One 7(5):e37557. https://doi.org/10.1371/journal.pone.0037557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grose JH, Belnap DM, Jensen JD, Mathis AD, Prince JT, Merrill BD, Burnett SH, Breakwell DP (2014) The genomes, proteomes, and structures of three novel phages that infect the Bacillus cereus group and carry putative virulence factors. J Virol 88(20):11846–11860. https://doi.org/10.1128/JVI.01364-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Grose JH, Jensen GL, Burnett SH, Breakwell DP (2014) Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 15(1):855. https://doi.org/10.1186/1471-2164-15-855

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ackermann HW, Elzanowski A, Fobo G, Stewart G (1995) Relationships of tailed phages: a survey of protein sequence identity. Arch Virol 140(10):1871–1884. https://doi.org/10.1007/BF01384350

    Article  CAS  PubMed  Google Scholar 

  19. Baluch J, Sussman R (1978) Correlation between UV dose requirement for lambda bacteriophage induction and lambda repressor concentration. J Virol 26(3):595–602. https://doi.org/10.1128/JVI.26.3.595-602.1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A number of research projects led up to the refining of these methods and were sponsored by the DFG (German Research Foundation BE-2157/3-1), the NRF (National Research Foundation of South Africa 78909), and the ITM (Institute for Tropical Medicine FA4 grant). All credit for field expertise and sample collection goes to the staff of the Skukuza State Veterinary Office, with a special thanks to Mr. Edgar Henry Dekker, without whom none of this work would have been possible.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hassim, A., Lekota, K.E. (2024). Isolation of Bacteriophages from Soil Samples in a Poorly Equipped Field Laboratory in Kruger National Park. In: Tumban, E. (eds) Bacteriophages. Methods in Molecular Biology, vol 2738. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3549-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3549-0_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3548-3

  • Online ISBN: 978-1-0716-3549-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics