Skip to main content

Genetic Engineering of Therapeutic Phages Using Type III CRISPR-Cas Systems

  • Protocol
  • First Online:
Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2734))

Abstract

The functional characterization of “hypothetical” phage genes is a major bottleneck in basic and applied phage research. To compound this issue, the most suitable phages for therapeutic applications—the strictly lytic variety—are largely recalcitrant to classical genetic techniques due to low recombination rates and lack of selectable markers. Here we describe methods for fast and effective phage engineering that rely upon a Type III-A CRISPR-Cas system. In these methods, the CRISPR-Cas system is used as a powerful counterselection tool to isolate rare phage recombinants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clokie MRJ, Millard AD, Letarov AV et al (2011) Phages in nature. Bacteriophage 1(1):31–45

    Article  PubMed  PubMed Central  Google Scholar 

  2. Twort FW (1915) An investigation on the nature of ultra-microscopic viruses. Lancet 186(4814):1241–1243

    Article  Google Scholar 

  3. D’Herelle F (1917) Sur Un Microbe Invisible Antagoniste Des Bacilles Dysentériques. CR Acad Sci Paris 165:373–375

    Google Scholar 

  4. Aswani VH, Shukla SK (2021) An early history of phage therapy in the United States: is it time to reconsider? Clin Med Res 19(2):82–89

    Article  PubMed Central  Google Scholar 

  5. Pires DP, Cleto S, Sillankorva S et al (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80(3):523–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen Y, Batra H, Dong J et al (2019) Genetic engineering of bacteriophages against infectious diseases. Front Microbiol 10:1–12

    Google Scholar 

  7. Mahler M, Costa AR, Beljouw SPB et al (2022) Approaches for bacteriophage genome engineering. Trends Biotechnol:1–17. https://doi.org/10.1016/j.tibtech.2022.08.008

  8. Hatoum-Aslan A (2018) Phage genetic engineering using CRISPR–Cas systems. Viruses 10(6):335

    Article  PubMed  PubMed Central  Google Scholar 

  9. Barrangou R, Fremaux C, Deveau H et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712

    Article  CAS  PubMed  Google Scholar 

  10. Jansen R, van Embden JDA, Gaastra W et al (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  11. Hille F, Richter H, Wong SP et al (2018) The biology of CRISPR-Cas: backward and forward. Cell 172(6):1239–1259

    Article  CAS  PubMed  Google Scholar 

  12. Makarova KS, Wolf YI, Iranzo J et al (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83

    Article  CAS  PubMed  Google Scholar 

  13. Bari SMN, Walker FC, Cater K et al (2017) Strategies for editing virulent staphylococcal phages using CRISPR-Cas10. ACS Synth Biol 6(12):2316–2325

    Article  CAS  PubMed  Google Scholar 

  14. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322(5909):1843–1845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hatoum-Aslan A, Maniv I, Samai P et al (2014) Genetic characterization of Antiplasmid immunity through a type III-A CRISPR-Cas system. J Bacteriol 196(2):310–317

    Article  PubMed  PubMed Central  Google Scholar 

  16. Maniv I, Jiang W, Bikard D et al (2016) Impact of different target sequences on type III CRISPR-Cas immunity. J Bacteriol 198(6):941–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hatoum-Aslan A, Samai P, Maniv I et al (2013) A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs. J Biol Chem 288(39):27888–27897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goldberg GW, Jiang W, Bikard D et al (2014) Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514(7524):633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marraffini LA, Sontheimer EJ (2010) Self versus non-self discrimination during CRISPR RNA-directed immunity. Nature 463(7280):568–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Samai P, Pyenson N, Jiang W et al (2015) Co-transcriptional DNA and RNA cleavage during type III CRISPR-Cas immunity. Cell 161(5):1164–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu TY, Liu J-J, Aditham AJ et al (2019) Target preference of type III-A CRISPR-Cas complexes at the transcription bubble. Nat Commun 10:1–13

    Google Scholar 

  22. Niewoehner O, Garcia-doval C, Rostøl JT et al (2017) Type III CRISPR – Cas systems produce cyclic oligoadenylate second messengers. Nature 548(7669):543–548

    Article  CAS  PubMed  Google Scholar 

  23. Kazlauskiene M, Kostiuk G, Venclovas Č et al (2017) A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems. Science 357:605–609

    Article  CAS  PubMed  Google Scholar 

  24. Nasef M, Muffly MC, Beckman AB et al (2019) Regulation of cyclic oligoadenylate synthesis by the Staphylococcus epidermidis Cas10-Csm complex. RNA 25:948–962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jiang W, Samai P, Marraffini LA (2016) Degradation of phage transcripts by CRISPR-associated RNases enables type III CRISPR-Cas immunity. Cell 164:710–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Walker FC, Chou-Zheng L, Dunkle JA et al (2017) Molecular determinants for CRISPR RNA maturation in the Cas10 – Csm complex and roles for non-Cas nucleases. Nucleic Acids Res 45(4):2112–2123

    CAS  PubMed  Google Scholar 

  27. Chou-Zheng L, Hatoum-Aslan A (2019) A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity. elife 8:e45393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chou-Zheng L, Hatoum-Aslan A (2022) Critical roles for ‘housekeeping’ nucleases in type III CRISPR-Cas immunity. elife 11:e81897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pyenson NC, Gayvert K, Varble A et al (2017) Broad targeting specificity during bacterial type III CRISPR-Cas immunity constrains viral escape. Cell Host Microbe 22:1–11

    Article  Google Scholar 

  30. Culbertson EK, Bari SMN, Dandu S et al (2019) Draft genome sequences of staphylococcus Podophages JBug18, Pike, Pontiff, and Pabna. Microbiol Resour Announc 8(8):e00054–e00019

    Article  PubMed  PubMed Central  Google Scholar 

  31. Cater K, Dandu VS, Bari SMN et al (2017) A novel Staphylococcus podophage encodes a unique lysin with unusual modular design. mSphere 2(2):e00040-17

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gibson DG, Young L, Chuang R-Y et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345

    Article  CAS  PubMed  Google Scholar 

  33. Abedon ST (2011) Lysis from without. Bacteriophage 1(1):46–49

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

A. H.-A. holds an Investigators in the Pathogenesis of Infectious Disease Award from the Burroughs Wellcome Fund. She is also supported by an NSF/MCB CAREER award [2054755] and NIH/NIAID [R21AI156636-01].

Declaration of Interests

A. H.-A. is the inventor of a US patent relating to this work (US20180251787A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asma Hatoum-Aslan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hill, C.M., Hatoum-Aslan, A. (2024). Genetic Engineering of Therapeutic Phages Using Type III CRISPR-Cas Systems. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 2734. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3523-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3523-0_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3522-3

  • Online ISBN: 978-1-0716-3523-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics