Skip to main content

Expansion Microscopy of Ciliary Proteins

  • Protocol
  • First Online:
Cilia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2725))

Abstract

Label-retention expansion microscopy (LR-ExM) is a sample preparation technique, which embeds the cells or tissues in a swellable hydrogel and expands the sample so that one can achieve a high resolution with any conventional fluorescence microscopes. Fluorescence loss during polymerization and protein denaturation have been a major limitation of standard expansion microscopy. To minimize fluorescence loss, LR-ExM uses trifunctional anchors, which can survive from polymerization and denaturation, and then introduce fluorophores after expansion. By using LR-ExM, one can study the structure of primary cilia at molecular-scale resolution with a much higher signal-to-noise ratio, compared with previously introduced expansion microscopy methods. In this chapter, we describe a detailed procedure showing how LR-ExM is used to study ciliary proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shi X, Garcia G 3rd, Van De Weghe JC, McGorty R, Pazour GJ, Doherty D, Huang B, Reiter JF (2017) Super-resolution microscopy reveals that disruption of ciliary transition-zone architecture causes Joubert syndrome. Nat Cell Biol 19(10):1178–1188. https://doi.org/10.1038/ncb3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wheway G, Nazlamova L, Hancock JT (2018) Signaling through the primary cilium. Front Cell Dev Biol 6:8. https://doi.org/10.3389/fcell.2018.00008

    Article  PubMed  PubMed Central  Google Scholar 

  3. Reiter JF, Leroux MR (2017) Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol 18(9):533–547. https://doi.org/10.1038/nrm.2017.60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678. https://doi.org/10.1016/j.cell.2009.10.036

    Article  CAS  PubMed  Google Scholar 

  5. Graser S, Stierhof YD, Lavoie SB, Gassner OS, Lamla S, Le Clech M, Nigg EA (2007) Cep164, a novel centriole appendage protein required for primary cilium formation. J Cell Biol 179(2):321–330. https://doi.org/10.1083/jcb.200707181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dummer A, Poelma C, DeRuiter MC, Goumans MJ, Hierck BP (2016) Measuring the primary cilium length: improved method for unbiased high-throughput analysis. Cilia 5:7. https://doi.org/10.1186/s13630-016-0028-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fisch C, Dupuis-Williams P (2011) Ultrastructure of cilia and flagella - back to the future! Biol Cell 103(6):249–270. https://doi.org/10.1042/BC20100139

    Article  PubMed  Google Scholar 

  8. Kiesel P, Alvarez Viar G, Tsoy N, Maraspini R, Gorilak P, Varga V, Honigmann A, Pigino G (2020) The molecular structure of mammalian primary cilia revealed by cryo-electron tomography. Nat Struct Mol Biol 27(12):1115–1124. https://doi.org/10.1038/s41594-020-0507-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sun S, Fisher RL, Bowser SS, Pentecost BT, Sui H (2019) Three-dimensional architecture of epithelial primary cilia. Proc Natl Acad Sci U S A 116(19):9370–9379. https://doi.org/10.1073/pnas.1821064116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi X, Li Q, Dai Z, Tran AA, Feng S, Ramirez AD, Lin Z, Wang X, Chow TT, Chen J, Kumar D, McColloch AR, Reiter JF, Huang EJ, Seiple IB, Huang B (2021) Label-retention expansion microscopy. J Cell Biol 220(9). https://doi.org/10.1083/jcb.202105067

  11. Chen F, Tillberg PW, Boyden ES (2015) Expansion microscopy. Science 347(6221)

    Google Scholar 

  12. Damstra HGJ, Mohar B, Eddison M, Akhmanova A, Kapitein LC, Tillberg PW (2022) Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). eLife 11. https://doi.org/10.7554/eLife.73775

  13. Chozinski TJ, Halpern AR, Okawa H, Kim HJ, Tremel GJ, Wong RO, Vaughan JC (2016) Expansion microscopy with conventional antibodies and fluorescent proteins. Nat Methods 13(6):485–488. https://doi.org/10.1038/nmeth.3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tillberg PW, Chen F, Piatkevich KD, Zhao Y, Yu CC, English BP, Gao L, Martorell A, Suk HJ, Yoshida F, DeGennaro EM, Roossien DH, Gong G, Seneviratne U, Tannenbaum SR, Desimone R, Cai D, Boyden ES (2016) Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol 34(9):987–992. https://doi.org/10.1038/nbt.3625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. M'Saad O, Bewersdorf J (2020) Light microscopy of proteins in their ultrastructural context. Nat Commun 11(1):3850. https://doi.org/10.1038/s41467-020-17523-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mercey O, Kostic C, Bertiaux E, Giroud A, Sadian Y, Gaboriau DCA, Morrison CG, Chang N, Arsenijevic Y, Guichard P, Hamel V (2022) The connecting cilium inner scaffold provides a structural foundation that protects against retinal degeneration. PLoS Biol 20(6):e3001649. https://doi.org/10.1371/journal.pbio.3001649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chang JB, Chen F, Yoon YG, Jung EE, Babcock H, Kang JS, Asano S, Suk HJ, Pak N, Tillberg PW, Wassie AT, Cai D, Boyden ES (2017) Iterative expansion microscopy. Nat Methods 14(6):593–599. https://doi.org/10.1038/nmeth.4261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen F, Wassie AT, Cote AJ, Sinha A, Alon S, Asano S, Daugharthy ER, Chang JB, Marblestone A, Church GM, Raj A, Boyden ES (2016) Nanoscale imaging of RNA with expansion microscopy. Nat Methods 13(8):679–684. https://doi.org/10.1038/nmeth.3899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D, Borgers S, Heine J, Schloetel JG, Reuss M, Unser M, Boyden ES, Sauer M, Hamel V, Guichard P (2019) Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat Methods 16(1):71–74. https://doi.org/10.1038/s41592-018-0238-1

    Article  CAS  PubMed  Google Scholar 

  20. Gao M, Maraspini R, Beutel O, Zehtabian A, Eickholt B, Honigmann A, Ewers H (2018) Expansion stimulated emission depletion microscopy (ExSTED). ACS Nano 12(5):4178–4185. https://doi.org/10.1021/acsnano.8b00776

    Article  CAS  PubMed  Google Scholar 

  21. Halpern AR, Alas GCM, Chozinski TJ, Paredez AR, Vaughan JC (2017) Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization. ACS Nano 11(12):12677–12686. https://doi.org/10.1021/acsnano.7b07200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li R, Chen X, Lin Z, Wang Y, Sun Y (2018) Expansion enhanced nanoscopy. Nanoscale 10(37):17552–17556. https://doi.org/10.1039/c8nr04267e

    Article  CAS  PubMed  Google Scholar 

  23. Hoek Hvd, Klena N, Jordan MA, Viar GA, Schaffer M, Erdmann PS, Wan W, Plitzko Jr M, Baumeister W, Pigino G, Hamel V, Guichard P, Engel BD (2021) In situ architecture of the ciliary base reveals the stepwise assembly of IFT trains. bioRxiv

    Google Scholar 

  24. Sun DE, Fan X, Shi Y, Zhang H, Huang Z, Cheng B, Tang Q, Li W, Zhu Y, Bai J, Liu W, Li Y, Wang X, Lei X, Chen X (2021) Click-ExM enables expansion microscopy for all biomolecules. Nat Methods 18(1):107–113. https://doi.org/10.1038/s41592-020-01005-2

    Article  CAS  PubMed  Google Scholar 

  25. Wen G, Vanheusden M, Acke A, Valli D, Neely RK, Leen V, Hofkens J (2020) Evaluation of direct grafting strategies via trivalent anchoring for enabling lipid membrane and cytoskeleton staining in expansion microscopy. ACS Nano 14(7):7860–7867. https://doi.org/10.1021/acsnano.9b09259

    Article  CAS  PubMed  Google Scholar 

  26. Karagiannis ED, Kang JS, Shin TW, Emenari A, Asano S, Lin L, Costa EK, Marblestone AH, Kasthuri N, Boyden ES (2019) Expansion microscopy of lipid membranes. bioRxiv. https://doi.org/10.1101/829903

  27. Sahabandu N, Kong D, Magidson V, Nanjundappa R, Sullenberger C, Mahjoub MR, Loncarek J (2019) Expansion microscopy for the analysis of centrioles and cilia. J Microsc 276(3):145–159. https://doi.org/10.1111/jmi.12841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katoh Y, Chiba S, Nakayama K (2020) Practical method for superresolution imaging of primary cilia and centrioles by expansion microscopy using an amplibody for fluorescence signal amplification. Mol Biol Cell 31(20):2195–2206. https://doi.org/10.1091/mbc.E20-04-0250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Truckenbrodt S, Sommer C, Rizzoli SO, Danzl JG (2019) A practical guide to optimization in X10 expansion microscopy. Nat Protoc 14(3):832–863. https://doi.org/10.1038/s41596-018-0117-3

    Article  CAS  PubMed  Google Scholar 

  30. Larkins CE, Aviles GD, East MP, Kahn RA, Caspary T (2011) Arl13b regulates ciliogenesis and the dynamic localization of Shh signaling proteins. Mol Biol Cell 22(23):4694–4703. https://doi.org/10.1091/mbc.E10-12-0994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the U.S. National Institutes of Health (R00 GM126136 to X.S.), and partially supported by the U.S. National Science Foundation (DMS1763272 to S.P.), and a grant from the Simons Foundation (594598 to S.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Park, S., Shi, X. (2024). Expansion Microscopy of Ciliary Proteins. In: Mennella, V. (eds) Cilia. Methods in Molecular Biology, vol 2725. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3507-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3507-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3506-3

  • Online ISBN: 978-1-0716-3507-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics