Skip to main content

Silicon–Fluoride Acceptors (SiFA) for 18F-Radiolabeling: From Bench to Bedside

  • Protocol
  • First Online:
Positron Emission Tomography

Abstract

Fluorine-18 (18F) is undoubtedly one of the most frequently applied radionuclides for the development of new radiotracers for positron emission tomography (PET) in the context of clinical cancer, neurological, and metabolic imaging. Until recently, the available radiochemical methodologies to introduce 18F into organic molecules ranging from small- to medium- and large-sized compounds were limited to a few applicable protocols. With the advent of late-stage fluorination of small aromatic, nonactivated compounds and various noncanonical labeling strategies geared toward the labeling of peptides and proteins, the molecular toolbox for PET radiotracer development was substantially extended. Especially, the noncanonical labeling methodologies characterized by the formation of Si–18F, B–18F, and Al–18F bonds give access to kit-like 18F-labeling of complex and side-group unprotected compounds, some of them already in clinical use. This chapter will particularly focus on silicon–fluoride acceptor (SiFA) chemistry and cover the history of its conceptual design and its translation into the clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wängler C, Kostikov A, Zhu J, Chin J, Wängler B, Schirrmacher R (2012) Silicon-[18F]fluorine radiochemistry: basics, applications and challenges. Appl Sci 2(2):277–302

    Article  Google Scholar 

  2. Schirrmacher R, Bernard-Gauthier V, Schirrmacher E, Bailey JJ, Jurkschat K, Wängler C, Wängler B (2019) Silicon-based 18F-radiopharmaceuticals: from basic SiFA chemistry toward its clinical application. In: Fluorine in life sciences: pharmaceuticals, medicinal diagnostics, and agrochemicals progress in fluorine science series. Elsevier, pp 551–574

    Chapter  Google Scholar 

  3. Bernard-Gauthier V, Lepage ML, Waengler B, Bailey JJ, Liang SH, Perrin DM, Vasdev N, Schirrmacher R (2018) Recent advances in 18F radiochemistry: a focus on B-18F, Si-18F, Al-18F, and C-18F radiofluorination via spirocyclic iodonium ylides. J Nucl Med 59(4):568–572

    Article  CAS  Google Scholar 

  4. Jacobson O, Kiesewetter DO, Chen X (2015) Fluorine-18 radiochemistry, labeling strategies and synthetic routes. Bioconjug Chem 26(1):1–18

    Article  CAS  Google Scholar 

  5. Mcbride WJ, D’Souza CA, Sharkey RM, Goldenberg DM (2012) The radiolabeling of proteins by the [18F]AlF method. Appl Radiat Isot 70(1):200–204

    Article  CAS  Google Scholar 

  6. Laverman P, D’Souza CA, Eek A, Mcbride WJ, Sharkey RM, Oyen WJG, Goldenberg DM, Boerman OC (2012) Optimized labeling of NOTA-conjugated octreotide with F-18. Tumour Biol 33(2):427–434

    Article  CAS  Google Scholar 

  7. Rosenthal MS, Bosch AL, Nickles RJ, Gatley SJ (1985) Synthesis and some characteristics of no-carrier added [18F]fluorotrimethylsilane. Int J Appl Radiat Isot 36(4):318–319

    Article  CAS  Google Scholar 

  8. Ting R, Harwig CW, Lo J, Li Y, Adam MJ, Ruth TJ, Petrin DM (2008) Substituent effects on aryltrifluoroborate solvolysis in water: implications for Suzuki-Miyaura coupling and the design of stable 18F-labeled aryltrifluoroborates for use in PET imaging. J Org Chem 73(12):4662–4670

    Article  CAS  Google Scholar 

  9. Ting R, Adam MJ, Ruth TJ, Perrin DM (2005) Arylfluoroborates and alkylfluorosilicates as potential PET imaging agents: high-yielding aqueous biomolecular 18F-labeling. J Am Chem Soc 127(38):13094–13095

    Article  CAS  Google Scholar 

  10. Svoboda K (1985) Short review of specific activity phenomena. Phenomena dependent on specific activity but not changing it. J Radioanal Nucl Chem 88(1):13–29

    Article  CAS  Google Scholar 

  11. Hevesy G (1923) The absorption and translocation of lead by plants: a contribution to the application of the method of radioactive indicators in the investigation of the change of substance in plants. Biochem J 17(4–5):439–445

    Article  CAS  Google Scholar 

  12. Schirrmacher R, Bradtmöller G, Schirrmacher E, Thews O, Tillmanns J, Siessmeier T, Buchholz HG, Bartenstein P, Wängler B, Niemeyer CM (2006) 18F-labeling of peptides by means of an organosilicon-based fluoride acceptor. Angew Chem Int Ed 45(36):6047–6050. https://doi.org/10.1002/anie.200600795

    Article  CAS  Google Scholar 

  13. Pauwels E, Cleeren F, Bormans G, Deroose CM, Leuven UZ (2018) Somatostatin receptor PET ligands – the next generation for clinical practice. Am J Nucl Med Mol Imaging 8(5):311–331

    CAS  Google Scholar 

  14. Waldmann CM, Stuparu AD, van Dam RM, Slavik R (2019) The search for an alternative to [68Ga]Ga-DOTA-TATE in neuroendocrine tumor theranostics: current state of 18F-labeled somatostatin analog development. Theranostics 9(5):1336–1347

    Article  CAS  Google Scholar 

  15. Bernard-Gauthier V, Bailey JJ, Liu Z, Wängler B, Wängler C, Jurkschat K, Perrin DM, Schirrmacher R (2015) From unorthodox to established: the current status of 18F-trifluoroborate- and 18F-SiFA-based radiopharmaceuticals in PET nuclear imaging. Bioconjug Chem 27(2):267–279

    Article  Google Scholar 

  16. Wängler C, Waser B, Alke A, Iovkova L, Buchholz H-G, Niedermoser S, Jurkschat K, Fottner C, Bartenstein P, Schirrmacher R, Reubi J-C, Wester H-J, Wängler B (2010) One-step 18F-labeling of carbohydrate-conjugated octreotate-derivatives containing a silicon-fluoride-acceptor (SiFA): in vitro and in vivo evaluation as tumor imaging agents for positron emission tomography (PET). Bioconjug Chem 21(12):2289–2296

    Article  Google Scholar 

  17. Lindner S, Wängler C, Bailey JJ, Jurkschat K, Bartenstein P, Wängler B, Schirrmacher R (2020) Radiosynthesis of [18F]SiFAlin-TATE for clinical neuroendocrine tumor positron emission tomography. Nat Protoc 15:3827–3843

    Article  CAS  Google Scholar 

  18. Bernard-Gauthier V, Wängler C, Schirrmacher E, Kostikov A, Jurkschat K, Wängler B, Schirrmacher R (2014) 18F-labeled silicon-based fluoride acceptors: potential opportunities for novel positron emitting radiopharmaceuticals. Biomed Res Int 2014:454503

    Article  Google Scholar 

  19. Niedermoser S, Chin J, Wängler C, Kostikov A, Bernard-Gauthier V, Vogler N, Soucy J-P, McEwan AJ, Schirrmacher R (2015) In vivo evaluation of 18F-SiFAlin-modified TATE: a potential challenge for 68Ga-DOTATATE, the clinical gold standard for somatostatin receptor imaging with PET. J Nucl Med 56(7):1100–1105

    Article  CAS  Google Scholar 

  20. Ilhan H, Lindner S, Todica A, Cyran CC, Tiling R, Auernhammer CJ, Spitzweg C, Boeck S, Unterrainer M, Gildehaus FJ, Böning G, Jurkschat K, Wängler C, Wängler B, Schirrmacher R, Bartenstein P (2020) Biodistribution and first clinical results of 18F-SiFAlin-TATE PET: a novel 18F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur J Nucl Med Mol Imaging 47(4):870–880

    Article  CAS  Google Scholar 

  21. Unterrainer M, Lindner S, Beyer L, Gildehaus FJ, Todica A, Mittlmeier LM, Jurkschat K, Wängler C, Wängler B, Schirrmacher R, Tonn JC, Albert NL, Bartenstein P, Ilhan H (2021) PET imaging of meningioma using the novel SSTR-targeting peptide 18F-SiTATE. Clin Nucl Med 46(8):667–668

    Article  Google Scholar 

  22. Beyer L, Gosewisch A, Lindner S, Völter F, Mittelmeier LM, Tiling R, Brendel M, Cyran CC, Unterrainer M, Rübenthaler J, Auerhammer CJ, Spitzweg C, Böning G, Gildehaus FJ, Jurkschat K, Wängler C, Wängler B, Schirrmacher R, Wenter V, Todica A, Bartenstein P, Ilhan H (2021) Dosimetry and optimal scan time of [18F]SiTATE-PET/CT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 48(11):3571–3581

    Article  CAS  Google Scholar 

  23. Lindner S, Simmet M, Gildehaus FJ, Jurkschat K, Wängler C, Wängler B, Bartenstein P, Schirrmacher R, Ilhan H (2020) Automated production of [18F]SiTATE on a Scintomics GRP™ platform for PET/CT imaging of neuroendocrine tumors. Nucl Med Biol 88–89:86–95

    Article  Google Scholar 

  24. Rosa-Neto P, Wängler B, Iovkova L, Boening G, Reader A, Jurkschat K, Schirrmacher E (2009) [18F]SiFA-isothiocyanate: a new highly effective radioactive labeling agent for lysine-containing proteins. Chembiochem 10:1321–1324

    Article  CAS  Google Scholar 

  25. Glaser M, Iveson P, Hoppmann S, Indrevoll B, Wilson A, Arukwe J, Danikas A, Bhalla R, Hiscock D (2013) Three methods for 18F labeling of the HER2-binding affibody molecule Z(HER2:2891) including preclinical assessment. J Nucl Med 54(11):1981–1988

    Article  CAS  Google Scholar 

  26. Hazari PP, Schulz J, Vimont D, Chadha N, Allard M, Szlosek-Pinaud M, Fouquet E, Mishra AK (2014) A new SiF-Dipropargyl glycerol scaffold as a versatile prosthetic group to design dimeric radioligands: synthesis of the [18F]BMPPSiF tracer to image serotonin receptors. ChemMedChem 9:337–349

    Article  CAS  Google Scholar 

  27. Bohn P, Deyine A, Azzouz R, Bailly L, Fiol-Petit C, Bischoff L, Fruit C, Marsais F, Vera P (2009) Design of silicon-based misonidazole analogues and 18F-radiolabelling. Nucl Med Biol 36(8):895–905

    Article  CAS  Google Scholar 

  28. Joyard Y, Azzouz R, Bischoff L, Papamicaël C, Labar D, Bol A, Bol V, Vera P, Grégoire V, Levacher V, Bohn P (2013) Synthesis of new 18F-radiolabeled silicon-based nitroimidazole compounds. Bioorg Med Chem 21(13):3680–3688

    Article  CAS  Google Scholar 

  29. Zhu J, Chin J, Wängler C, Wängler B, Lennox RB, Schirrmacher R (2014) Rapid 18F-labeling and loading of PEGylated gold nanoparticles for in vivo applications. Bioconjug Chem 25:1143–1150

    Article  CAS  Google Scholar 

  30. Wurzer A, Carlo D, Schmidt A, Beck R, Eiber M, Schwaiger M, Wester H-J (2020) Radiohybrid ligands: a novel tracer concept exemplified by 18F- or 68Ga-labeled RhPSMA inhibitors. J Nucl Med 61(5):735–742

    Article  CAS  Google Scholar 

  31. Wurzer A, Carlo D, Herz M, Richter A, Robu S, Schirrmacher R, Mascarin A, Weber W, Eiber M, Schwaiger M, Wester H-J (2021) Automated synthesis of [18F]Ga-RhPSMA-7/-7.3: results, quality control and experience from more than 200 routine productions. EJNMMI Radiopharm Chem 6(41):4. https://doi.org/10.1186/s41181-021-00120-5

    Article  Google Scholar 

  32. Connolly D, Bailey JJ, Ilhan H, Bartenstein P, Wangler C, Wangler B, Wuest F, Schirrmacher R (2020) 18F-labeling of radiotracers functionalized with a silicon fluoride acceptor (SiFA) for positron emission tomography. J Vis Exp 155:e60623. https://doi.org/10.3791/60623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schirrmacher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gower-Fry, L. et al. (2024). Silicon–Fluoride Acceptors (SiFA) for 18F-Radiolabeling: From Bench to Bedside. In: Witney, T.H., Shuhendler, A.J. (eds) Positron Emission Tomography. Methods in Molecular Biology, vol 2729. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3499-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3499-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3498-1

  • Online ISBN: 978-1-0716-3499-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics