Skip to main content

Quantification of Poly(A) Tail Length and Terminal Modifications Using Direct RNA Sequencing

  • Protocol
  • First Online:
Deadenylation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2723))

  • 514 Accesses

Abstract

Poly(A) tail metabolism is critical for various biological processes, including early embryogenesis and cell differentiation. While traditional biochemical methods to measure poly(A) tail length allow for the study of selected transcripts, the advent of long-read sequencing technologies enabled the development of simple and robust protocols to measure poly(A) tail length at the transcriptome level. Here, we describe a direct RNA sequencing protocol to capture poly(A) tail terminal additions based on the splint ligation of barcoded oligos compatible with terminal guanylation and uridylation. We cover how to prepare the libraries and perform the bioinformatics analysis to simultaneously determine the length of the transcripts’ poly(A) tails and detect the presence of terminal guanylation and uridylation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Raisch T, Valkov E (2022) Regulation of the multisubunit CCR4-NOT deadenylase in the initiation of mRNA degradation. Curr Opin Struct Biol 77:102460

    Article  CAS  PubMed  Google Scholar 

  2. Passmore LA, Coller J (2022) Roles of mRNA poly(A) tails in regulation of eukaryotic gene expression. Nat Rev Mol Cell Biol 23(2):93–106

    Article  CAS  PubMed  Google Scholar 

  3. Subtelny AO, Eichhorn SW, Chen GR et al (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508(7494):66–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morgan M, Kumar L, Li Y et al (2021) Post-transcriptional regulation in spermatogenesis: all RNA pathways lead to healthy sperm. Cell Mol Life Sci 78(24):8049–8071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brouze A, Krawczyk PS, Dziembowski A et al (2023) Measuring the tail: methods for poly(A) tail profiling. Wiley Interdiscip Rev RNA 14(1):e1737

    Article  PubMed  Google Scholar 

  6. Chang H, Lim J, Ha M et al (2014) TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 53(6):1044–1052

    Article  CAS  PubMed  Google Scholar 

  7. Lim J, Lee M, Son A et al (2016) mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev 30(14):1671–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nicholson AL, Pasquinelli AE (2019) Tales of detailed poly(A) tails. Trends Cell Biol 29(3):191–200

    Article  CAS  PubMed  Google Scholar 

  9. Rhoads A, Au KF (2015) PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13(5):278–289

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Zhao Y, Bollas A et al (2021) Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 39(11):1348–1365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Krause M, Niazi AM, Labun K et al (2019) Tailfindr: alignment-free poly(A) length measurement for Oxford Nanopore RNA and DNA sequencing. RNA 25(10):1229–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yu S, Kim VN (2020) A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 21(9):542–556

    Article  CAS  PubMed  Google Scholar 

  13. Warkocki Z, Liudkovska V, Gewartowska O et al (2018) Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond Ser B Biol Sci 373(1762):20180162

    Article  Google Scholar 

  14. Lim J, Kim D, Lee YS et al (2018) Mixed tailing by TENT4A and TENT4B shields mRNA from rapid deadenylation. Science 361(6403):701–704

    Article  CAS  PubMed  Google Scholar 

  15. Lim J, Ha M, Chang H et al (2014) Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159(6):1365–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ran FA, Hsu PD, Wright J et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34(18):3094–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Danecek P, Bonfield JK, Liddle J et al (2021) Twelve years of SAMtools and BCFtools. Gigascience 10(2):giab008

    Google Scholar 

  19. Simpson JT, Workman RE, Zuzarte PC et al (2017) Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods 14(4):407–410

    Article  CAS  PubMed  Google Scholar 

  20. Smith MA, Ersavas T, Ferguson JM et al (2020) Molecular barcoding of native RNAs using nanopore sequencing and deep learning. Genome Res 30(9):1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Viscardi MJ, Arribere JA (2022) Poly(a) selection introduces bias and undue noise in direct RNA-sequencing. BMC Genomics 23(1):530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the research project ZIA ES103355 funded by the Division of Intramural Research of the National Institute of Environmental Health Sciences, National Institutes of Health, which was awarded to MM. The authors would like to thank Yolanda L. Jones for her help in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gupta, A., Papas, B.N., Baptissart, M., Morgan, M. (2024). Quantification of Poly(A) Tail Length and Terminal Modifications Using Direct RNA Sequencing. In: Valkov, E., Goldstrohm, A.C. (eds) Deadenylation. Methods in Molecular Biology, vol 2723. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3481-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3481-3_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3480-6

  • Online ISBN: 978-1-0716-3481-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics