Skip to main content

Bayesian Optimization in Drug Discovery

  • Protocol
  • First Online:
High Performance Computing for Drug Discovery and Biomedicine

Abstract

Drug discovery deals with the search for initial hits and their optimization toward a targeted clinical profile. Throughout the discovery pipeline, the candidate profile will evolve, but the optimization will mainly stay a trial-and-error approach. Tons of in silico methods have been developed to improve and fasten this pipeline. Bayesian optimization (BO) is a well-known method for the determination of the global optimum of a function. In the last decade, BO has gained popularity in the early drug design phase. This chapter starts with the concept of black box optimization applied to drug design and presents some approaches to tackle it. Then it focuses on BO and explains its principle and all the algorithmic building blocks needed to implement it. This explanation aims to be accessible to people involved in drug discovery projects. A strong emphasis is made on the solutions to deal with the specific constraints of drug discovery. Finally, a large set of practical applications of BO is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Terayama K, Sumita M, Tamura R, Tsuda K (2021) Black-box optimization for automated discovery. Acc Chem Res 54:1334–1346. https://doi.org/10.1021/acs.accounts.0c00713

    Article  CAS  PubMed  Google Scholar 

  2. Alarie S, Audet C, Gheribi AE, Kokkolaras M, Le Digabel S (2021) Two decades of blackbox optimization applications. EURO J Comput Optim 9:100011. https://doi.org/10.1016/j.ejco.2021.100011

    Article  Google Scholar 

  3. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13:281–305. https://doi.org/10.5555/2188385.2188395

    Article  Google Scholar 

  4. Zhang Y, Ling C (2018) A strategy to apply machine learning to small datasets in materials science. Npj Comput Mater 4:25. https://doi.org/10.1038/s41524-018-0081-z

    Article  CAS  Google Scholar 

  5. Griffiths R-R, Klarner L, Moss HB, Ravuri A, Truong S, Stanton S, Tom G, Rankovic B, Du Y, Jamasb A, Deshwal A, Schwartz J, Tripp A, Kell G, Frieder S, Bourached A, Chan A, Moss J, Guo C, Durholt J, Chaurasia S, Strieth-Kalthoff F, Lee AA, Cheng B, Aspuru-Guzik A, Schwaller P, Tang J (2022) GAUCHE: a library for Gaussian processes in chemistry. https://doi.org/10.48550/ARXIV.2212.04450

  6. Mockus J, Tiesis V, Zilinskas A (1978) The application of Bayesian methods for seeking the extremum. In: Towards global optimization. Elsevier, Amsterdam, pp 117–129

    Google Scholar 

  7. Blaschke T, Arús-Pous J, Chen H, Margreitter C, Tyrchan C, Engkvist O, Papadopoulos K, Patronov A (2020) REINVENT 2.0: an AI tool for De Novo drug design. J Chem Inf Model 60:5918–5922. https://doi.org/10.1021/acs.jcim.0c00915

    Article  CAS  PubMed  Google Scholar 

  8. Rakhimbekova A, Lopukhov A, Klyachko N, Kabanov A, Madzhidov TI, Tropsha A (2023) Efficient design of peptide-binding polymers using active learning approaches. J Control Release 353:903–914. https://doi.org/10.1016/j.jconrel.2022.11.023

    Article  CAS  PubMed  Google Scholar 

  9. Brochu E, Cora VM, de Freitas N (2010) A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. https://doi.org/10.48550/arXiv.1012.2599

  10. Stark F, Hazırbaş C, Triebel R, Cremers D (2015) CAPTCHA recognition with active deep learning. Aachen

    Google Scholar 

  11. Lewis DD, Gale WA (1994) A sequential algorithm for training text classifiers. In: Croft BW, van Rijsbergen CJ (eds) SIGIR ‘94. Springer London, London, pp 3–12

    Google Scholar 

  12. Shahriari B, Swersky K, Wang Z, Adams RP, de Freitas N (2016) Taking the human out of the loop: a review of Bayesian optimization. Proc IEEE 104:148–175. https://doi.org/10.1109/JPROC.2015.2494218

    Article  Google Scholar 

  13. Garnett R (2023) Bayesian optimization. Cambridge University Press

    Book  Google Scholar 

  14. Tom G, Hickman RJ, Zinzuwadia A, Mohajeri A, Sanchez-Lengeling B, Aspuru-Guzik A (2022) Calibration and generalizability of probabilistic models on low-data chemical datasets with DIONYSUS. https://doi.org/10.48550/arXiv.2212.01574

  15. Gramacy RB (2021) Surrogates: Gaussian process modeling, design and optimization for the applied sciences. Chapman Hall/CRC, Boca Raton

    Google Scholar 

  16. Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello CAC (ed) Learning and intelligent optimization. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 507–523

    Chapter  Google Scholar 

  17. Zaytsev A. Acquisition function for Bayesian optimisation using random forests as surrogate model. In: StackExchange. https://stats.stackexchange.com/questions/455481/acquisition-function-for-bayesian-optimisation-using-random-forests-as-surrogate

  18. Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural network. In: Bach F, Blei D (eds) Proceedings of the 32nd international conference on machine learning. PMLR, Lille, pp 1613–1622

    Google Scholar 

  19. Zhang Y, Lee AA (2019) Bayesian semi-supervised learning for uncertainty-calibrated prediction of molecular properties and active learning. Chem Sci 10:8154–8163. https://doi.org/10.1039/C9SC00616H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ryu S, Kwon Y, Kim WY (2019) A Bayesian graph convolutional network for reliable prediction of molecular properties with uncertainty quantification. Chem Sci 10:8438–8446. https://doi.org/10.1039/C9SC01992H

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Huang W, Zhao D, Sun F, Liu H, Chang EY (2015) Scalable Gaussian process regression using deep neural networks. In: International joint conference on artificial intelligence

    Google Scholar 

  22. Izmailov P, Vikram S, Hoffman MD, Wilson AG (2021) What are Bayesian neural network posteriors really like? In: International conference on machine learning

    Google Scholar 

  23. Yang Z, Milas KA, White AD (2022) Now what sequence? Pre-trained ensembles for Bayesian optimization of protein sequences. https://doi.org/10.1101/2022.08.05.502972

  24. Bengio Y. What are some advantages of using Gaussian process models vs neural networks? In: Quora. https://www.quora.com/What-are-some-advantages-of-using-Gaussian-Process-Models-vs-Neural-Networks

  25. Gaussian process. In: Wikipedia. https://en.wikipedia.org/wiki/Gaussian_process

  26. Cheng L, Yang Z, Liao B, Hsieh C, Zhang S (2022) ODBO: Bayesian optimization with search space prescreening for directed protein evolution. https://doi.org/10.48550/arXiv.2205.09548

  27. Martinez-Cantin R, Tee K, McCourt M (2018) Practical Bayesian optimization in the presence of outliers. In: Storkey A, Perez-Cruz F (eds) Proceedings of the twenty-first international conference on artificial intelligence and statistics. PMLR, pp 1722–1731

    Google Scholar 

  28. Eriksson D, Pearce M, Gardner J, Turner RD, Poloczek M (2019) Scalable global optimization via local Bayesian optimization. In: Wallach H, Larochelle H, Beygelzimer A, Alché-Buc FD, Fox E, Garnett R (eds) Advances in neural information processing systems. Curran Associates, Inc

    Google Scholar 

  29. Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. MIT Press, Cambridge, MA

    Google Scholar 

  30. Mockus J (1994) Application of Bayesian approach to numerical methods of global and stochastic optimization. J Glob Optim 4:347–365. https://doi.org/10.1007/BF01099263

    Article  Google Scholar 

  31. Frazier PI (2018) A tutorial on Bayesian optimization. https://doi.org/10.48550/arXiv.1807.02811

  32. David L, Thakkar A, Mercado R, Engkvist O (2020) Molecular representations in AI-driven drug discovery: a review and practical guide. J Cheminform 12:56. https://doi.org/10.1186/s13321-020-00460-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hammer AJS, Leonov AI, Bell NL, Cronin L (2021) Chemputation and the standardization of chemical informatics. JACS Au 1:1572–1587. https://doi.org/10.1021/jacsau.1c00303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Orosz Á, Héberger K, Rácz A (2022) Comparison of descriptor- and fingerprint sets in machine learning models for ADME-Tox targets. Front Chem 10:852893. https://doi.org/10.3389/fchem.2022.852893

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci 4:268–276. https://doi.org/10.1021/acscentsci.7b00572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Krenn M, Häse F, Nigam A, Friederich P, Aspuru-Guzik A (2020) Self-referencing embedded strings (SELFIES): a 100% robust molecular string representation. Mach Learn Sci Technol 1:045024. https://doi.org/10.1088/2632-2153/aba947

    Article  Google Scholar 

  37. Winter R, Montanari F, Noé F, Clevert D-A (2019) Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem Sci 10:1692–1701. https://doi.org/10.1039/C8SC04175J

    Article  CAS  PubMed  Google Scholar 

  38. Ferruz N, Schmidt S, Höcker B (2022) ProtGPT2 is a deep unsupervised language model for protein design. Nat Commun 13:4348. https://doi.org/10.1038/s41467-022-32007-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, Leskovec J (2020) Strategies for pre-training graph neural networks. In: International conference on learning representations

    Google Scholar 

  40. Maziarz K, Jackson-Flux H, Cameron P, Sirockin F, Schneider N, Stiefl N, Segler M, Brockschmidt M (2021) Learning to extend molecular scaffolds with structural motifs. https://doi.org/10.48550/arXiv.2103.03864

  41. Irwin R, Dimitriadis S, He J, Bjerrum E (2022) Chemformer: a pre-trained transformer for computational chemistry. Mach Learn Sci Technol 3:015022. https://doi.org/10.1088/2632-2153/ac3ffb

    Article  Google Scholar 

  42. Nguyen V (2019) Bayesian optimization for accelerating hyper-parameter tuning. In: 2019 IEEE second international conference on artificial intelligence and knowledge engineering (AIKE). IEEE, Sardinia, pp 302–305

    Chapter  Google Scholar 

  43. Matérn B (1986) Spatial variation, 2nd edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  44. Stein ML (1999) Interpolation of spatial data. Springer, New York

    Book  Google Scholar 

  45. Genton MG (2001) Classes of kernels for machine learning: a statistics perspective. J Mach Learn Res 2:299–312

    Google Scholar 

  46. Morgan HL (1965) The generation of a unique machine description for chemical structures – a technique developed at chemical abstracts service. J Chem Doc 5:107–113. https://doi.org/10.1021/c160017a018

    Article  CAS  Google Scholar 

  47. Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754. https://doi.org/10.1021/ci100050t

    Article  CAS  PubMed  Google Scholar 

  48. Ruggiu F, Marcou G, Varnek A, Horvath D (2010) ISIDA property-labelled fragment descriptors. Mol Inform 29:855–868. https://doi.org/10.1002/minf.201000099

    Article  CAS  PubMed  Google Scholar 

  49. Capecchi A, Probst D, Reymond J-L (2020) One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome. J Cheminform 12:43. https://doi.org/10.1186/s13321-020-00445-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sturm N, Sun J, Vandriessche Y, Mayr A, Klambauer G, Carlsson L, Engkvist O, Chen H (2019) Application of bioactivity profile-based fingerprints for building machine learning models. J Chem Inf Model 59:962–972. https://doi.org/10.1021/acs.jcim.8b00550

    Article  CAS  PubMed  Google Scholar 

  51. Pyzer-Knapp EO (2018) Bayesian optimization for accelerated drug discovery. IBM J Res Dev 62:2:1–2:7. https://doi.org/10.1147/JRD.2018.2881731

    Article  Google Scholar 

  52. Raymond JW, Willett P (2002) Effectiveness of graph-based and fingerprint-based similarity measures for virtual screening of 2D chemical structure databases. J Comput Aided Mol Des 16:59–71. https://doi.org/10.1023/A:1016387816342

    Article  CAS  PubMed  Google Scholar 

  53. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857. https://doi.org/10.2307/2528823

    Article  Google Scholar 

  54. Moss HB, Griffiths R-R (2020) Gaussian process molecule property prediction with FlowMO. https://doi.org/10.48550/arXiv.2010.01118

  55. International Union of Pure and Applied Chemistry (1998) A guide to IUPAC nomenclature of organic compounds: recommendations 1993, Reprinted. Blackwell Science, Oxford

    Google Scholar 

  56. Weininger D (1988) SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 28:31–36. https://doi.org/10.1021/ci00057a005

    Article  CAS  Google Scholar 

  57. Heller SR, McNaught A, Pletnev I, Stein S, Tchekhovskoi D (2015) InChI, the IUPAC international chemical identifier. J Cheminform 7:23. https://doi.org/10.1186/s13321-015-0068-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lodhi H, Shawe-Taylor J, Cristianini N, Watkins C (2000) Text classification using string kernels. In: Leen T, Dietterich T, Tresp V (eds) Advances in neural information processing systems. MIT Press

    Google Scholar 

  59. Cancedda N, Gaussier E, Goutte C, Renders JM (2003) Word sequence kernels. J Mach Learn Res 3:1059–1082. https://doi.org/10.5555/944919.944963

    Article  Google Scholar 

  60. Cao D-S, Zhao J-C, Yang Y-N, Zhao C-X, Yan J, Liu S, Hu Q-N, Xu Q-S, Liang Y-Z (2012) In silico toxicity prediction by support vector machine and SMILES representation-based string kernel. SAR QSAR Environ Res 23:141–153. https://doi.org/10.1080/1062936X.2011.645874

    Article  CAS  PubMed  Google Scholar 

  61. Moss HB, Beck D, González J, Leslie DS, Rayson P (2020) BOSS: Bayesian optimization over string spaces. In: Proceedings of the 34th international conference on neural information processing systems. Curran Associates Inc, Red Hook

    Google Scholar 

  62. Jamasb AR, Viñas R, Ma EJ, Harris C, Huang K, Hall D, Lió P, Blundell TL (2020) Graphein – a Python library for geometric deep learning and network analysis on protein structures and interaction networks. https://doi.org/10.1101/2020.07.15.204701

  63. Takimoto E, Warmuth MK (2002) Path kernels and multiplicative updates. In: Proceedings of the 15th annual conference on computational learning theory. Springer, Berlin/Heidelberg, pp 74–89

    Chapter  Google Scholar 

  64. Shervashidze N, Schweitzer P, van Leeuwen EJ, Mehlhorn K, Borgwardt KM (2011) Weisfeiler-Lehman graph kernels. J Mach Learn Res 12:2539–2561

    Google Scholar 

  65. Rupp M, Schneider G (2010) Graph kernels for molecular similarity. Mol Inform 29:266–273. https://doi.org/10.1002/minf.200900080

    Article  CAS  PubMed  Google Scholar 

  66. Ralaivola L, Swamidass SJ, Saigo H, Baldi P (2005) Graph kernels for chemical informatics. Neural Netw 18:1093–1110. https://doi.org/10.1016/j.neunet.2005.07.009

    Article  PubMed  Google Scholar 

  67. Gao P, Yang X, Tang Y-H, Zheng M, Andersen A, Murugesan V, Hollas A, Wang W (2021) Graphical Gaussian process regression model for aqueous solvation free energy prediction of organic molecules in redox flow batteries. Phys Chem Chem Phys 23:24892–24904. https://doi.org/10.1039/D1CP04475C

    Article  CAS  PubMed  Google Scholar 

  68. Kashima H, Tsuda K, Inokuchi A (2003) Marginalized kernels between labeled graphs. In: Proceedings, twentieth international conference on machine learning. pp 321–328

    Google Scholar 

  69. Fromer JC, Coley CW (2022) Computer-aided multi-objective optimization in small molecule discovery. https://doi.org/10.48550/ARXIV.2210.07209

  70. Whittle P (1983) Optimization over time: dynamic programming and stochastic control. Wiley, Chichester

    Google Scholar 

  71. Jasrasaria D, Pyzer-Knapp EO (2019) Dynamic control of explore/exploit trade-off in Bayesian optimization. In: Arai K, Kapoor S, Bhatia R (eds) Intelligent computing. Springer, Cham, pp 1–15

    Google Scholar 

  72. Byrd RH, Lu P, Nocedal J, Zhu C (1995) A limited memory algorithm for bound constrained optimization. SIAM J Sci Comput 16:1190–1208. https://doi.org/10.1137/0916069

    Article  Google Scholar 

  73. Zhu C, Byrd RH, Lu P, Nocedal J (1997) Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans Math Softw 23:550–560. https://doi.org/10.1145/279232.279236

    Article  Google Scholar 

  74. Thompson WR (1933) On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. Biometrika 25:285. https://doi.org/10.2307/2332286

    Article  Google Scholar 

  75. Hennig P, Schuler CJ (2012) Entropy search for information-efficient global optimization. J Mach Learn Res 1809–1837. https://doi.org/10.5555/2188385.2343701

  76. Villemonteix J, Vazquez E, Walter E (2009) An informational approach to the global optimization of expensive-to-evaluate functions. J Glob Optim 44:509–534. https://doi.org/10.1007/s10898-008-9354-2

    Article  Google Scholar 

  77. Wu J, Poloczek M, Wilson AG, Frazier PI (2017) Bayesian optimization with gradients. https://doi.org/10.48550/ARXIV.1703.04389

  78. Auer P (2003) Using confidence bounds for exploitation-exploration trade-offs. J Mach Learn Res 3:397–422. https://doi.org/10.5555/944919.944941

    Article  Google Scholar 

  79. Srinivas N, Krause A, Kakade S, Seeger M (2010) Gaussian process optimization in the bandit setting: no regret and experimental design. In: Proceedings of the 27th international conference on international conference on machine learning. Omni Press, Madison, pp 1015–1022

    Google Scholar 

  80. (2016) GPyOpt: a Bayesian optimization framework in Python

    Google Scholar 

  81. Kushner HJ (1964) A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise. J Basic Eng 86:97–106. https://doi.org/10.1115/1.3653121

    Article  Google Scholar 

  82. Jones DR (2001) A taxonomy of global optimization methods based on response surfaces. J Glob Optim 21:345–383. https://doi.org/10.1023/A:1012771025575

    Article  Google Scholar 

  83. Močkus J (1975) On Bayesian methods for seeking the extremum. In: Marchuk GI (ed) Optimization techniques IFIP technical conference Novosibirsk, July 1–7, 1974. Springer Berlin Heidelberg, Berlin/Heidelberg, pp 400–404

    Chapter  Google Scholar 

  84. Vazquez E, Bect J (2010) Convergence properties of the expected improvement algorithm with fixed mean and covariance functions. J Stat Plan Inference 140:3088–3095. https://doi.org/10.1016/j.jspi.2010.04.018

    Article  Google Scholar 

  85. Kamperis S (2021) Acquisition functions in Bayesian optimization. In: Lets Talk Sci. https://ekamperi.github.io/machine%20learning/2021/06/11/acquisition-functions.html

  86. Mayr LM, Bojanic D (2009) Novel trends in high-throughput screening. Curr Opin Pharmacol 9:580–588. https://doi.org/10.1016/j.coph.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  87. Azimi J, Fern A, Fern X (2010) Batch Bayesian optimization via simulation matching. In: Lafferty J, Williams C, Shawe-Taylor J, Zemel R, Culotta A (eds) Advances in neural information processing systems. Curran Associates, Inc

    Google Scholar 

  88. Englhardt A, Trittenbach H, Vetter D, Böhm K (2020) Finding the sweet spot: batch selection for one-class active learning. In: SDM

    Google Scholar 

  89. Graff DE, Shakhnovich EI, Coley CW (2021) Accelerating high-throughput virtual screening through molecular pool-based active learning. Chem Sci 12:7866–7881. https://doi.org/10.1039/D0SC06805E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bellamy H, Rehim AA, Orhobor OI, King R (2022) Batched Bayesian optimization for drug design in noisy environments. J Chem Inf Model 62:3970–3981. https://doi.org/10.1021/acs.jcim.2c00602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. González J, Dai Z, Hennig P, Lawrence N (2016) Batch Bayesian optimization via local penalization. In: Proceedings of the 19th international conference on artificial intelligence and statistics (AISTATS). pp 648–657

    Google Scholar 

  92. Snoek J, Larochelle H, Adams RP (2012) Practical Bayesian optimization of machine learning algorithms. In: Proceedings of the 25th international conference on neural information processing systems – volume 2. Curran Associates Inc, Red Hook, pp 2951–2959

    Google Scholar 

  93. Hernández-Lobato J, Gelbart M, Adams R, Hoffman M, Ghahramani Z (2016) A general framework for constrained Bayesian optimization using information-based search. https://doi.org/10.17863/CAM.6477

  94. Swersky K, Snoek J, Adams RP (2013) Multi-task Bayesian optimization. In: Burges CJ, Bottou L, Welling M, Ghahramani Z, Weinberger KQ (eds) Advances in neural information processing systems. Curran Associates, Inc

    Google Scholar 

  95. Wager TT, Hou X, Verhoest PR, Villalobos A (2016) Central nervous system multiparameter optimization desirability: application in drug discovery. ACS Chem Neurosci 7:767–775. https://doi.org/10.1021/acschemneuro.6b00029

    Article  CAS  PubMed  Google Scholar 

  96. Daulton S, Balandat M, Bakshy E (2020) Differentiable expected hypervolume improvement for parallel multi-objective Bayesian optimization. In: Proceedings of the 34th international conference on neural information processing systems. Curran Associates Inc, Red Hook

    Google Scholar 

  97. Torres JAG, Lau SH, Anchuri P, Stevens JM, Tabora JE, Li J, Borovika A, Adams RP, Doyle AG (2022) A multi-objective active learning platform and web app for reaction optimization. J Am Chem Soc 144:19999–20007. https://doi.org/10.1021/jacs.2c08592

    Article  CAS  PubMed  Google Scholar 

  98. Konakovic Lukovic M, Tian Y, Matusik W (2020) Diversity-guided multi-objective Bayesian optimization with batch evaluations. In: Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H (eds) Advances in neural information processing systems. Curran Associates, Inc, pp 17708–17720

    Google Scholar 

  99. Clayton AD, Pyzer-Knapp E, Purdie M, Jones M, Barthelme A, Pavey J, Kapur N, Chamberlain T, Blacker J, Bourne R (2022) Bayesian self-optimization for telescoped continuous flow synthesis. Angew Chem Int Ed 62:e202214511. https://doi.org/10.1002/anie.202214511

    Article  CAS  Google Scholar 

  100. Agarwal G, Doan HA, Robertson LA, Zhang L, Assary RS (2021) Discovery of energy storage molecular materials using quantum chemistry-guided multiobjective Bayesian optimization. Chem Mater 33:8133–8144. https://doi.org/10.1021/acs.chemmater.1c02040

    Article  CAS  Google Scholar 

  101. Alley EC, Khimulya G, Biswas S, AlQuraishi M, Church GM (2019) Unified rational protein engineering with sequence-based deep representation learning. Nat Methods 16:1315–1322. https://doi.org/10.1038/s41592-019-0598-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Maus N, Jones HT, Moore J, Kusner M, Bradshaw J, Gardner JR (2022) Local latent space Bayesian optimization over structured inputs. In: Oh AH, Agarwal A, Belgrave D, Cho K (eds) Advances in neural information processing systems

    Google Scholar 

  103. Griffiths R-R, Hernández-Lobato JM (2020) Constrained Bayesian optimization for automatic chemical design using variational autoencoders. Chem Sci 11:577–586. https://doi.org/10.1039/C9SC04026A

    Article  CAS  PubMed  Google Scholar 

  104. Deshwal A, Doppa J (2021) Combining latent space and structured kernels for Bayesian optimization over combinatorial spaces. In: Beygelzimer A, Dauphin Y, Liang P, Vaughan JW (eds) Advances in neural information processing systems

    Google Scholar 

  105. Grosnit A, Tutunov R, Maraval AM, Griffiths R-R, Cowen-Rivers AI, Yang L, Zhu L, Lyu W, Chen Z, Wang J, Peters J, Bou-Ammar H (2021) High-dimensional Bayesian optimisation with variational autoencoders and deep metric learning. https://doi.org/10.48550/arXiv.2106.03609

  106. Daulton S, Wan X, Eriksson D, Balandat M, Osborne MA, Bakshy E (2022) Bayesian optimization over discrete and mixed spaces via probabilistic reparameterization. https://doi.org/10.48550/arXiv.2210.10199

  107. Alvi AS (2019) Practical Bayesian optimisation for hyperparameter tuning. University of Oxford

    Google Scholar 

  108. Turner R, Eriksson D, McCourt M, Kiili J, Laaksonen E, Xu Z, Guyon I (2021) Bayesian optimization is superior to random search for machine learning hyperparameter tuning: analysis of the black-box optimization challenge 2020. https://doi.org/10.48550/arXiv.2104.10201

  109. Landrum G. RDKit: open-source cheminformatics

    Google Scholar 

  110. Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, MacNair CR, French S, Carfrae LA, Bloom-Ackermann Z, Tran VM, Chiappino-Pepe A, Badran AH, Andrews IW, Chory EJ, Church GM, Brown ED, Jaakkola TS, Barzilay R, Collins JJ (2020) A deep learning approach to antibiotic discovery. Cell 180:688–702.e13. https://doi.org/10.1016/j.cell.2020.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Soleimany AP, Amini A, Goldman S, Rus D, Bhatia SN, Coley CW (2021) Evidential deep learning for guided molecular property prediction and discovery. ACS Cent Sci 7:1356–1367. https://doi.org/10.1021/acscentsci.1c00546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Graff DE, Aldeghi M, Morrone JA, Jordan KE, Pyzer-Knapp EO, Coley CW (2022) Self-focusing virtual screening with active design space pruning. J Chem Inf Model 62:3854–3862. https://doi.org/10.1021/acs.jcim.2c00554

    Article  CAS  PubMed  Google Scholar 

  113. Korovina K, Xu S, Kandasamy K, Neiswanger W, Poczos B, Schneider J, Xing E (2020) ChemBO: Bayesian optimization of small organic molecules with synthesizable recommendations. In: Chiappa S, Calandra R (eds) Proceedings of the twenty third international conference on artificial intelligence and statistics. PMLR, pp 3393–3403

    Google Scholar 

  114. Jin W, Coley CW, Barzilay R, Jaakkola T (2017) Predicting organic reaction outcomes with Weisfeiler-Lehman network. In: Proceedings of the 31st international conference on neural information processing systems. Curran Associates Inc, Red Hook, pp 2604–2613

    Google Scholar 

  115. Wang M, Hsieh C-Y, Wang J, Wang D, Weng G, Shen C, Yao X, Bing Z, Li H, Cao D, Hou T (2022) RELATION: a deep generative model for structure-based De Novo drug design. J Med Chem 65:9478–9492. https://doi.org/10.1021/acs.jmedchem.2c00732

    Article  CAS  PubMed  Google Scholar 

  116. Mehta S, Goel M, Priyakumar UD (2022) MO-MEMES: a method for accelerating virtual screening using multi-objective Bayesian optimization. Front Med 9. https://doi.org/10.3389/fmed.2022.916481

  117. Sterling T, Irwin JJ (2015) ZINC 15 – ligand discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Enamine HTS Collection. https://enamine.net/compound-collections/screening-collection/hts-collection

  119. Evans R, O’Neill M, Pritzel A, Antropova N, Senior A, Green T, Žídek A, Bates R, Blackwell S, Yim J, Ronneberger O, Bodenstein S, Zielinski M, Bridgland A, Potapenko A, Cowie A, Tunyasuvunakool K, Jain R, Clancy E, Kohli P, Jumper J, Hassabis D (2021) Protein complex prediction with AlphaFold-Multimer. https://doi.org/10.1101/2021.10.04.463034

  120. Stanton S, Maddox W, Gruver N, Maffettone P, Delaney E, Greenside P, Wilson AG (2022) Accelerating Bayesian optimization for biological sequence design with denoising autoencoders. https://doi.org/10.48550/arXiv.2203.12742

  121. Zhao Y, Hryniewicki MK (2019) XGBOD: improving supervised outlier detection with unsupervised representation learning. https://doi.org/10.48550/ARXIV.1912.00290

  122. Hughes ZE, Nguyen MA, Wang J, Liu Y, Swihart MT, Poloczek M, Frazier PI, Knecht MR, Walsh TR (2021) Tuning materials-binding peptide sequences toward gold- and silver-binding selectivity with Bayesian optimization. ACS Nano 15:18260–18269. https://doi.org/10.1021/acsnano.1c07298

    Article  CAS  PubMed  Google Scholar 

  123. Hu R, Fu L, Chen Y, Chen J, Qiao Y, Si T (2022) Protein engineering via Bayesian optimization-guided evolutionary algorithm and robotic experiments. https://doi.org/10.1101/2022.08.11.503535

  124. Park JW, Stanton S, Saremi S, Watkins A, Dwyer H, Gligorijevic V, Bonneau R, Ra S, Cho K (2022) PropertyDAG: multi-objective Bayesian optimization of partially ordered, mixed-variable properties for biological sequence design. https://doi.org/10.48550/arXiv.2210.04096

  125. Khan A, Cowen-Rivers AI, Grosnit A, Deik D-G-X, Robert PA, Greiff V, Smorodina E, Rawat P, Akbar R, Dreczkowski K, Tutunov R, Bou-Ammar D, Wang J, Storkey A, Bou-Ammar H (2023) Toward real-world automated antibody design with combinatorial Bayesian optimization. Cell Rep Methods 3:100374. https://doi.org/10.1016/j.crmeth.2022.100374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. de Almeida AF, Moreira R, Rodrigues T (2019) Synthetic organic chemistry driven by artificial intelligence. Nat Rev Chem 3:589–604. https://doi.org/10.1038/s41570-019-0124-0

    Article  CAS  Google Scholar 

  127. Shields BJ, Stevens J, Li J, Parasram M, Damani F, Alvarado JIM, Janey JM, Adams RP, Doyle AG (2021) Bayesian reaction optimization as a tool for chemical synthesis. Nature 590:89–96. https://doi.org/10.1038/s41586-021-03213-y

    Article  CAS  PubMed  Google Scholar 

  128. Kwon Y, Lee D, Kim JW, Choi Y-S, Kim S (2022) Exploring optimal reaction conditions guided by graph neural networks and Bayesian optimization. ACS Omega 7:44939–44950. https://doi.org/10.1021/acsomega.2c05165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Goodman J (2009) Computer software review: Reaxys. J Chem Inf Model 49:2897–2898. https://doi.org/10.1021/ci900437n

    Article  CAS  Google Scholar 

  130. Wang Y, Chen T-Y, Vlachos DG (2021) NEXTorch: a design and Bayesian optimization toolkit for chemical sciences and engineering. J Chem Inf Model 61:5312–5319. https://doi.org/10.1021/acs.jcim.1c00637

    Article  CAS  PubMed  Google Scholar 

  131. Okazawa K, Tsuji Y, Kurino K, Yoshida M, Amamoto Y, Yoshizawa K (2022) Exploring the optimal alloy for nitrogen activation by combining Bayesian optimization with density functional theory calculations. ACS Omega 7:45403–45408. https://doi.org/10.1021/acsomega.2c05988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kumar A, Pant KK, Upadhyayula S, Kodamana H (2023) Multiobjective Bayesian optimization framework for the synthesis of methanol from syngas using interpretable Gaussian process models. ACS Omega 8:410–421. https://doi.org/10.1021/acsomega.2c04919

    Article  CAS  PubMed  Google Scholar 

  133. Rosa SS, Nunes D, Antunes L, Prazeres DMF, Marques MPC, Azevedo AM (2022) Maximizing mRNA vaccine production with Bayesian optimization. Biotechnol Bioeng 119:3127–3139. https://doi.org/10.1002/bit.28216

    Article  CAS  PubMed  Google Scholar 

  134. Chan L, Hutchison GR, Morris GM (2019) Bayesian optimization for conformer generation. J Cheminform 11:32. https://doi.org/10.1186/s13321-019-0354-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Chan L, Hutchison GR, Morris GM (2020) BOKEI: Bayesian optimization using knowledge of correlated torsions and expected improvement for conformer generation. Phys Chem Chem Phys 22:5211–5219. https://doi.org/10.1039/C9CP06688H

    Article  CAS  PubMed  Google Scholar 

  136. Fang L, Makkonen E, Todorović M, Rinke P, Chen X (2021) Efficient amino acid conformer search with Bayesian optimization. J Chem Theory Comput 17:1955–1966. https://doi.org/10.1021/acs.jctc.0c00648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rao A, Tunjic TM, Brunsteiner M, Müller M, Fooladi H, Weber N (2022) Bayesian optimization for ternary complex prediction (BOTCP). https://doi.org/10.1101/2022.06.03.494737

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Colliandre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Colliandre, L., Muller, C. (2024). Bayesian Optimization in Drug Discovery. In: Heifetz, A. (eds) High Performance Computing for Drug Discovery and Biomedicine. Methods in Molecular Biology, vol 2716. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3449-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3449-3_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3448-6

  • Online ISBN: 978-1-0716-3449-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics