Skip to main content

Monitoring Effector Translocation with the TEM-1 Beta-Lactamase Reporter System: From Endpoint to Time Course Analysis

  • Protocol
  • First Online:
Bacterial Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2715))

  • 876 Accesses

Abstract

Among the bacterial secretion systems, the Type III, IV, and VI secretion systems enable bacteria to secrete proteins directly into a target cell. This specific form of secretion, referred to as “translocation”, is essential for a number of pathogens to alter and/or kill the targeted cell. The translocated proteins, called effector proteins, can directly interfere with the normal processes of the targeted cell, preventing elimination of the pathogen and promoting its multiplication. The function of the effector proteins varies greatly depending on the considered pathogen and the targeted cell. In addition, there is often no magic bullet and the number of effector proteins can range from a handful to hundreds, with, for instance, over 300 effector proteins substrate of the Icm/Dot Type IV secretion system in the human pathogen Legionella pneumophila. Identifying, detecting, and monitoring the translocation of each of the effector proteins represent an active field or research and are key to understanding the bacterial molecular weaponry. Translational fusion of the effector with a reporter protein of known activity remains the best method to monitor effector translocation. The development of a fluorescent substrate for the TEM-1 beta-lactamase has turned this antibiotic-resistance protein into a highly versatile reporter system to investigate protein transfer events associated with microbial infection of host cells. We here described a simple protocol to assay translocation of an effector protein by the Icm/Dot system of the human pathogen Legionella pneumophila. Taking advantage that the protonophore CCCP inhibits the secretion activity, this simple protocol can be derived into a time course analysis to follow the kinetic of effector translocation into target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Costa TRD, Felisberto-Rodrigues C, Meir A et al (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343–359

    Article  CAS  PubMed  Google Scholar 

  2. Sory MP, Cornelis GR (1994) Translocation of a hybrid YopE-adenylate cyclase from Yersinia enterocolitica into HeLa cells. Mol Microbiol 14:583–594

    Article  CAS  PubMed  Google Scholar 

  3. Day JB, Ferracci F, Plano GV (2003) Translocation of YopE and YopN into eukaryotic cells by Yersinia pestis yopN, tyeA, sycN, yscB and lcrG deletion mutants measured using a phosphorylatable peptide tag and phosphospecific antibodies. Mol Microbiol 47:807–823

    Article  CAS  PubMed  Google Scholar 

  4. Lee VT, Anderson DM, Schneewind O (1998) Targeting of Yersinia Yop proteins into the cytosol of HeLa cells: one-step translocation of YopE across bacterial and eukaryotic membranes is dependent on SycE chaperone. Mol Microbiol 28:593–601

    Article  CAS  PubMed  Google Scholar 

  5. Charpentier X, Oswald E (2004) Identification of the secretion and translocation domain of the enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, using TEM-1 beta-lactamase as a new fluorescence-based reporter. J Bacteriol 186:5486–5495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zlokarnik G, Negulescu PA, Knapp TE et al (1998) Quantitation of transcription and clonal selection of single living cells with beta-lactamase as reporter. Science 279:84–88

    Article  CAS  PubMed  Google Scholar 

  7. Pechous RD, Goldman WE (2015) Illuminating targets of bacterial secretion. PLoS Pathog 11:e1004981

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lodoen MB, Gerke C, Boothroyd JC (2010) A highly sensitive FRET-based approach reveals secretion of the actin-binding protein toxofilin during Toxoplasma gondii infection. Cell Microbiol 12:55–66

    Article  CAS  PubMed  Google Scholar 

  9. Allombert J, Jaboulay C, Michard C et al (2021) Deciphering Legionella effector delivery by Icm/Dot secretion system reveals a new role for c-di-GMP signaling. J Mol Biol 433:166985

    Article  CAS  PubMed  Google Scholar 

  10. Bröms JE, Meyer L, Sun K, Lavander M, Sjöstedt A (2012) Unique substrates secreted by the type VI secretion system of Francisella tularensis during intramacrophage infection. PLoS One 7:e50473

    Article  PubMed  PubMed Central  Google Scholar 

  11. Minamino T, Namba K (2008) Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–488

    Article  CAS  PubMed  Google Scholar 

  12. Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT (2008) Energy source of flagellar type III secretion. Nature 451:489–492

    Article  CAS  PubMed  Google Scholar 

  13. Wilharm G, Lehmann V, Krauss K et al (2004) Yersinia enterocolitica type III secretion depends on the proton motive force but not on the flagellar motor components MotA and MotB. Infect Immun 72:4004–4009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charpentier X, Gabay JE, Reyes M et al (2009) Chemical genetics reveals bacterial and host cell functions critical for type IV effector translocation by Legionella pneumophila. PLoS Pathog 5:e1000501

    Article  PubMed  PubMed Central  Google Scholar 

  15. Harmon DE, Davis AJ, Castillo C, Mecsas J (2010) Identification and characterization of small-molecule inhibitors of Yop translocation in Yersinia pseudotuberculosis. Antimicrob Agents Chemother 54:3241–3254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Geddes K, Cruz F, Heffron F (2007) Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog 3:e196

    Article  PubMed  PubMed Central  Google Scholar 

  17. Marketon MM, DePaolo RW, DeBord KL, Jabri B, Schneewind O (2005) Plague bacteria target immune cells during infection. Science 309:1739–1741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. de Felipe KS, Glover RT, Charpentier X et al (2008) Legionella eukaryotic-like type IV substrates interfere with organelle trafficking. PLoS Pathog 4:e1000117

    Article  PubMed  PubMed Central  Google Scholar 

  19. Steinberg TH, Newman AS, Swanson JA, Silverstein SC (1987) Macrophages possess probenecid-inhibitable organic anion transporters that remove fluorescent dyes from the cytoplasmic matrix. J Cell Biol 105:2695–2702

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anne Vianney or Xavier Charpentier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Allombert, J., Vianney, A., Charpentier, X. (2024). Monitoring Effector Translocation with the TEM-1 Beta-Lactamase Reporter System: From Endpoint to Time Course Analysis. In: Journet, L., Cascales, E. (eds) Bacterial Secretion Systems . Methods in Molecular Biology, vol 2715. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3445-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3445-5_35

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3444-8

  • Online ISBN: 978-1-0716-3445-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics